湍流流动中的温度、混合分数和速度的同时成像外文翻译资料

 2022-11-30 16:56:57

英语原文共 16 页,剩余内容已隐藏,支付完成后下载完整资料


湍流流动中的温度、混合分数和速度的同时成像

Benoit Fond,1 Christopher Abram,1 Andrew L Heyes,1 Andreas M Kempf,2 and Frank Beyrau1

1帝国理工学院机械工程系

2模拟流体动力学和反应电流教授,德国杜伊斯堡-埃森大学f.beyrau @,* imperial.ac.uk

摘要:

本文提出了一种基于粒子的红外荧光粉的光学诊断技术,它是一种诊断在湍流中的气体温度、流速和混合分数的二维测测量技术。粒子Mie的散射信号使用传统的PIV技术被记录,散发的磷光使用双色法确定示踪温度。在这项工作中提出的理论模型表明,小的示踪粒子的温度和气体的温度相关。此外,通过播种磷光颗粒流和非发光粒子的流,考虑温度之后,混合分数也可以使用磷光发光强度来确定。详细描述了根据光谱研究确定合适的荧光粉的实验技术。通过同时测量温度,速度和混合分数在湍流射流加热到700 K。相关的单镜头的联合诊断证明的精度为2至5%,精度为2%。

copy;2012美国光学学会

OCIS代码:(120.1740)燃烧诊断;(280.0280)遥感和传感器;(280.2490)流动诊断;(280.7250)测速仪;(280.6780)温度;(160.2540)荧光和发光材料。

参考文献

1. D. Geyer, A. Kempf, A. Dreizler, and J. Janicka, “Turbulent opposed-jet flames: A critical benchmark experimentfor combustion LES,” Combust. Flame 143(4), 524–548 (2005).

2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and BreachPublishers, 1990).

3. J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34(3), 442–448 (1996).

4. D. Most and A. Leipertz, “Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique,” Appl. Opt. 40(30), 5379–5387 (2001).

5. C. F. Kaminski, J. Engtrouml;m, and M. Alden, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst. 27, 85–93 (1998).

6. P. R. Medwell, Q. N. Chan, P. A. Kalt, Z. T. Alwahabi, B. B. Dally, and G. J. Nathan, “Instantaneous temperature imaging of diffusion flames using two-line atomic fluorescence,” Appl. Spectrosc. 64(2), 173–176 (2010).

7. R. Giezendanner-Thoben, U. Meier, W. Meier, J. Heinze, and M. Aigner, “Phase-locked two-line OH planar laser-induced fluorescence thermometry in a pulsating gas turbine model combustor at atmospheric pressure,” Appl.Opt. 44(31), 6565–6577 (2005).

8. M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22(4), 251–253 (1997).

9. M. Louml;ffler, F. Beyrau, and A. Leipertz, “Acetone laser-induced fluorescence behavior for the simultaneous quantification of temperature and residual gas distribution in fired spark-ignition engines,” Appl. Opt. 49(1), 37–49 (2010).

10. B. K. McMillin, J. L. Palmer, and R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32(36), 7532–7545 (1993).

11. W. G. Bessler, F. Hildenbrand, and C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures in a NO-seeded flame,” Appl. Opt. 40(6), 748–756 (2001).

12. W. G. Bessler and C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B-Lasers 78(5), 519–533 (2004).

13. S. Pfadler, F. Beyrau, and A. Leipertz, “Flame front detection and characterization using conditioned particle image velocimetry (CPIV),” Opt. Express 15(23), 15444–15456 (2007).

14. M. Yu, G. Sauml;rner, C. C. M. Luijten, M. Richter, M. Aldeacute;n, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol. 21(3), 4 (2010).

15. J. P. Feist, A. L. Heyes, and S. Seefeldt, “Oxygen quenching of phosphorescence from thermographic phosphors,” Meas. Sci. Technol. 14(5), N17–N20 (2003).

16. J. Bruuml;bach, A. Dreizler, and J. Janicka, “Gas compositional and pressure effects on thermographic phosphor thermometry,” Meas. Sci. Technol. 18(3), 764–770 (2007).

17. S. Allison and G. Gillies, “Remote thermometry with thermographic phosphors: Instrumentation and applications,” Rev. Sci. Instrum. 68(7), 2615–2649 (1997).

18. M. Aldeacute;n, A. Omrane, M. Richter, and G. Sauml;rner, “Thermographic phosphors for thermometry: A survey of combustion applications,” Prog. Energ. Combust. 37(4), 422–461 (2011).

19. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).

20. J. P. Feist, A. L. Heyes, and S. Seefeldt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” Proc. Instn. Mech. Engrs Part A: J. Power and Energy 217(2), 193–200 (2003).

21. J. Bruuml;bach, M. Hage, J. Janicka, and A. Dreizler, “Simultaneous phosphor and CARS thermometry at the wall-gas interface within a combustor,” Proc. Combust. Inst. 32(1), 855–861 (2009).

22. A. Omrane, F. Ossler, and M. Aldeacute;n, “Two-dimensional surface temperature measurements of burning materials,” Proc. Combust. Inst. 29(2), 2653–2659 (2002).

23. J. Bruuml;bach, T. Kissel, and A. Dreizler, “Phosphor thermometry at an optically accessible internal combustion engine,” in Laser Applications to Chemical, Security and Environmental Analysis, (Optical Society of America,2010), paper LWA5.

24. A. Omrane, G. Sauml;rner, and M. Aldeacute;n, “Two-dimensional temperature imaging of single droplets and sprays using thermographic phosphors,” Appl. Phys. B-Lasers 79, 431–434 (2004).

25. A. Omrane, G. Juhlin, F. Ossler, and M. Aldeacute;n, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt. 43(17), 3523–3529 (2004).

26. J. P. Feist and A. L. Heyes, “The characterization of Y 2 O 2 S:Sm powder as a thermographic phosphor for high temperature applications,” Meas. Sci. Technol. 11(7), 942–947 (2000).

27. L. P. Goss, A. A. Smith, and M. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum.60(12), 3702–3706 (1989).

28. A. Heyes, S. Seefeldt, and J. Feist, “Two-color phosphor thermometry for surface temperature measurement,”Opt. Laser Technol. 38(4-6), 257–26

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[29241],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。