中学生科学探究中对等论证的特点外文翻译资料

 2023-01-06 11:41:04

中学生科学探究中对等论证的特点

原文作者 HEEKYONG KIM 和 JINWOONG SONG 单位 物理系教育、教育学院、首尔国立大学

摘要:这项研究解释了中学生科学探究的对等论证特点。参与者为在韩国首尔一所中学八年级的两个男孩和六个女孩。学生以小组的形式参与了开放性的探究活动。每组准备了报告同行评议,然后在同行讨论中,小组展示他们的探究结果而另一组则是作为评论者,在某种程度上类似于科学家的演讲。本研究数据的来源包括音频、录像带的讨论、学生报告的副本,以及由学生完成的问卷和被访问学生的成绩单。结果发现重要的对等讨论总体上经历了一下四个阶段:聚焦,交流,辩论和总结。此外,在关键性的讨论中75.6%的证据使用的是学生的个人观点以及各种认知和社会策略。对于一个有效的关键讨论,充分利用聚焦的舞台被发现是重要的因素。在辩论过程中学生提高了解释和实验的方法以及这样的反馈可以让探究反复进行。最后,我们确定一个真实的科学探究必须具备一个开放的探究是具有重要的、真正的科学探究要素。

关键词:好辩的科学探究;关键的讨论;对等论证

科学探究

实际操作是科学教育的重要组成部分,为学生提供了体验自然世界的方法。但实践表明,学生通过这种方法却获得的很少。一些研究人员甚至认为学校科学实际工作反而导致科学不足或扭曲的看法(Hodson,1998;Hodson amp; Bencze 1998;威灵顿,1998)。

在大多数学校的科学教学工作中,重点在于做而不是在于思考、讨论,论证以及谈判。英国科学课程调查表明,大部分时间花在实际工作、致力于实践工作才可以产生实践结果 (牛顿、司机、amp;奥斯本,1999)。一些研究发现,许多学生在实验室的基本问题是完成给定的任务。(Berry,Mulhall Loughran,amp; Gunstone 1999;埃德蒙森amp;诺瓦克,1993)。在韩国,一个调查在物理学中中学生实际操作特点的报道称:只有3%的实际工作是为了帮助学生学习如何使用数据来支持结论,以及只有9.5%的实际操作是用于交流工作的结果(Kim Kang amp;歌曲,2003)。

科学实践活动没有思考和谈论将会导致严重的结果。作为一个对于这个世界来说不成问题的事实它给人一种虚假的印象同时它也不能使学生具备检验和批判有关科学知识的能力. (司机,牛顿,amp;奥斯本,2000)。然而,现代科学教育工作者认为科学教育有责任帮助学生理解科学的本质,科学方法和了解科学家是如何工作的(科学教育协会,1981年,国家研究理事会,1996;国家科学教师协会,1995年)。

首先,它需要作为公民教育的一部分,以及在一个充满民主和科学的国家中公民必须具备的决策能力. (司机、浸出、米勒和斯科特,1996);第二,对于雇主来说像科学家般工作以及具备掌握科学方法的技巧是很重要的. (Woolnough,1998)。从这一点上来看,现在学校的实际科学工作需要被检查以及对科学探索的真实性的检验需要改革。

Lemke指出,学习科学意味着用科学的方式说话。学习科学之后就有必要在阅读、写作、推理以及解决问题时使用规定的科学语言,指导日常生活和实验室的具体行为(Lemke,1990年,p . 1)。为了使用科学语言,学生在猜想、讨论以及具备挑战的活动方面要给予参与的机会。在实际工作中,有必要去检验证据和结果之间的关系,让学生去证实他们的观点,同时其他学生也要对此提出疑问以及有关的建议方案。

这种类型的交流正反映了真正的科学交流,同时也帮学生理解那些有关科学的名词。

有关科学的历史和哲学的研究人员把争论和好辩作为科学活动的核心部分。 (富兰克林,1986;福勒,1986;啤梨,1994年,泰勒,1996)。日常情境中,学生交谈,生成、提炼、沟通、推理以及实验能力将科学作为一个重要参数(库恩,1993)。

这是第二个关于如何让学生积极参与科学探究的研究。研究分三个阶段进行:

a)关于用科学探究论证理论的讨论来支持学生的对等论证(Kim amp;Song,2004);

b)在科学探究论证过程中有关学生对等论证的特点

c)如何让学生在科学探究中通过辨证的过程进行学习的探究

本文的重点是检验学生在科学探究中对等论证的特点:

1、在学生的论证中这些论据的来源是哪儿?

2、在学生的论证中该使用怎样的策略?

3、批判性讨论该如何进行呢?

4、哪些类型的讨论才是发现关键的讨论?

5、科学探究和论证

科学探究和论证

论证是一种语言的、社会的和理性的活动,旨在说服从一个合理的、批评的、可接受的角度通过提出一个或多个共同命题来证明这一观点(van Eemeren、Grootendorst amp; Henkemans,2002)。论证是话语的一种类型并且是探究科学中认识论框架的核心。当前的科学研究显示论证是科学决议的一个核心。 (Fuller,1997;泰勒,1997)。尽管最终在杂志和教科书中会把科学描述成纯分析或纯逻辑。但科学研究(如实验室研究)显示,在写作、研究和生产知识中大部分的科学包括辩证和修辞论证,研究有关的生产知识(拉图amp;沃格称,1986;萨顿,1992)。科学家投入精力去说服别人他们感知到的和所做的解释是重要的并且也是生动的 (坎宁安amp;头盔,1998)。Pera也认为科学的理性包含在科学可以依靠修辞论证来证明它的决定和行为。 (pera,1994)。

虽然当前的企业把论证和关于实践的辩论看成是一个科学家的核心,但科学教育并不这么认为,最近关于论证对作为分析和解释科学课堂讨论、争论尤其是关于了解学生如何参与科学知识的建设和评价的有效性正在教育界引起了新的关注。 (Duschl,埃伦伯根amp; Erduran,1999;凯利,德鲁克,amp;陈,1998;库恩,1992年,1993;牛顿et al .,1999;奥斯本Erduran,amp;西蒙,2004)。吉梅内斯等人声称,在科学教育中论证尤其与之相关因为科学探究的目标是通过知识的生成、证明、信仰和具体的行为去认识世界。 (吉梅内斯——Aleixandre Rodriguez amp; Duschl,2000,p . 75)。研究者用大量的理由来强调论证的重要性,比如提供关于学习科学的机会,不仅是有关科学的内容 (司机et al .,2000;斯本et al .,2004),而且是使学生的科学思维和推理更加的可见(贝尔amp;绝壁,2000;Chinn amp;安德森,1998)以及支持学生在发展中的科学思维(库恩、1992、1993;库恩,肖,amp;费尔顿,1997)。一些研究也将更加关注教师有关论证的教学(贝尔amp;绝壁,2000;凯利et al .,1998;凯利amp;高雄,2002)

先前关于学生话语的研究依赖于对参数分析的应用,或者是关于Toutin模型的参数(贝尔amp;绝壁,2000;Erduran,西蒙amp;奥斯本2004;凯利et al .,1998)。

在这些研究中,更关注的是结构的特点和单一个体参数的内容,几个人对关于论证总体结构的研究没有引起足够的关注。此外,在上下文的实际参数中,表示在大多数论点中作为链条和权证的数据在更复杂的推理是不明确的. (Chinn,安德森,1998)。一些研究者试图制定计划, 使学生更充分地适应组织话语的结构和证据 (Duschl et al .,1999)。

然而,在以前的研究中,大多数分析参数的目的是评估参数的质量。学生在科学探究的过程中很少能够知道如何支持和优化参数的方式。因此,本研究的目的不是评价,而是描述和理解学生的论证,同时我们也将更加专注于参数形成的过程,而不是参数的形式和内容。

材料和方法

参与者:

在韩国,科学课堂上学生很少有机会可以评论实验结果或者提出自己的建议和解释.许多学生认为探究只是收集数据或者验证他们已经知道的事实。 (Kim amp;Song,2003)。

对于参与者来说这是他们第一次经历这样开放性的调查、写一个同行报告并且能有一个对此进行批判性的讨论的机会。参与者是八个志愿者学生和他们的科学老师,他们是来自韩国首尔一所中学的两个男孩和六个女孩,他们在班里的成绩有好的也有中等水平的,但是他们都几乎没有在科学课堂上经历开放的探究或者参与带有批判性的讨论。参与的教师有四年在中学教书的经历。教师在这个探究性活动中扮演的是提供活动材料的人以及本次讨论的组织者。

过程:

在本次研究中研究者设计了一个时间较长的活动目的是为了促进有关学生论证的教学。

关于辩论探究的活动被分成了实验活动和辩论活动两个部分。在夏令营活动中学生已经以小组的形式进行了室外的探究性活动,每个小组由两到三个学生组成。

小组分配如下:

A组(泡沫组) 两个男孩(Sungjun, Taesik)

B组(带组) 三个女孩(Yubin, Sumin, Heeyong)

C组(仪器组) 三个女孩(Juhee, Kyunghee, Minjung)

实验活动后,学生要求提前写一个关于同行回顾的的论证报告,以及开展一个有关的批判性讨论。

外文文献出处:Research in Science Education (2006) 36: 211Y233

The Features of Peer Argumentation in Middle School Studentsrsquo; Scientific Inquiry

HEEKYONG KIM* AND JINWOONG SONG

Department of Physics Education, College of Education, Seoul National University E-mail: science7@dreamwiz.com; heekyong.kim@kcl.ac.uk

Abstract: This study examined the features of peer argumentation in middle school studentsrsquo; scientific inquiry. Participants were two boys and six girls in grade 8 of a middle school in Seoul, Korea. Students engaged in open inquiry activities in small groups. Each group prepared the report for peer review and then, during the peer discussion, presented their inquiry results while another group acted as critics, in a way similar to conference presentations by scientists. This studyrsquo;s data sources included audio- and video-tapes of discussions, copies of student reports, questionnaires completed by the students and transcripts of interviews with the students. It was found that the critical peer discussion in general proceeded through the following four stages: Focusing, Exchanging, Debating and Closing. In addition, 75.6% of evidence used in studentsrsquo; arguments was personal evidence and students used various cognitive and social strategies in the critical discussion. For an effective critical discussion, making good use of the Focusing Stage was found to be important factor. Students improved their interpretation and methods of experiment during the argumentation process and this feedback made the inquiry circular. Finally, we identify a model of argumentative scientific inquiry as an open inquiry that has the key components of authentic scientific inquiry.

Key Words: argumen

剩余内容已隐藏,支付完成后下载完整资料


Research in Science Education (2006) 36: 211Y233 # Springer 2005 DOI: 10.1007/s11165-005-9005-2

The Features of Peer Argumentation in Middle School Studentsrsquo; Scientific Inquiry

HEEKYONG KIM* AND JINWOONG SONG

Department of Physics Education, College of Education, Seoul National University E-mail: science7@dreamwiz.com; heekyong.kim@kcl.ac.uk

Abstract: This study examined the features of peer argumentation in middle school studentsrsquo; scientific inquiry. Participants were two boys and six girls in grade 8 of a middle school in Seoul, Korea. Students engaged in open inquiry activities in small groups. Each group prepared the report for peer review and then, during the peer discussion, presented their inquiry results while another group acted as critics, in a way similar to conference presentations by scientists. This studyrsquo;s data sources included audio- and video-tapes of discussions, copies of student reports, questionnaires completed by the students and transcripts of interviews with the students. It was found that the critical peer discussion in general proceeded through the following four stages: Focusing, Exchanging, Debating and Closing. In addition, 75.6% of evidence used in studentsrsquo; arguments was personal evidence and students used various cognitive and social strategies in the critical discussion. For an effective critical discussion, making good use of the Focusing Stage was found to be important factor. Students improved their interpretation and methods of experiment during the argumentation process and this feedback made the inquiry circular. Finally, we identify a model of argumentative scientific inquiry as an open inquiry that has the key components of authentic scientific inquiry.

Key Words: argumentative scientific inquiry, critical discussion, peer argumentation

Scientific Inquiry

Practical work is a key component of science education that provides students with access to experience of the natural world. But research on practical work shows that students often achieve little meaningful learning through it and some researchers have even argued that school science practical work promotes deficient or distorted views of science (Hodson, 1998; Hodson amp; Bencze, 1998; Wellington, 1998).

In most practical work of school science, the emphasis is often on doing rather than on thinking and little time is set aside for discussion, argumentation, and negotiation of meanings. Observation of science lessons in England indicated that much of the time spent on practical work is devoted to carrying out the practical procedures themselves (Newton, Driver, amp; Osborne, 1999). Some studies found that the fundamental concern of many students in the laboratory is just completion of the given task (Berry, Mulhall, Loughran, amp; Gunstone, 1999; Edmondson amp; Novak, 1993). In Korea, a survey of the features of practical work in physics in middle school science textbooks reported that only 3% of the practical work was intended to help students to learn how to use data to support a conclusion and only 9.5% on learning to communicate the results of their work (Kim, Kang, amp; Song, 2003).

Practical activities without thinking and talking about science can lead to serious shortcomings. It can give false impressions of science as an unproblematic collation of facts about the world and it does not empower students with the ability to examine scientific claims critically (Driver, Newton, amp; Osborne, 2000). Contemporary science educators, however, agree that science education has a responsibility to help students to understand the nature of science, scientific methods and how scientists work (Association for Science Education, 1981; National Research Council, 1996; National Science Teachers Association, 1995). This responsibility has an intrinsic justification in that knowing about the activities of science is an essential part of scientific literacy and public understanding of science. It is also often given a two-fold extrinsic justification (Wellington, 1998). First, it is required as part of education for citizenship and the ability to be a decision maker in a democracy imbued with science (Driver, Leach, Millar, amp; Scott, 1996); and second, the activity of working like a scientist and the skills of scientific method are said to be valued by employers (Woolnough, 1998). From this point of view, present school science practical work needs to be examined and reformed to reflect the authentic features of scientific inquiry.

As Lemke pointed out, learning science means learning to talk science (Lemke, 1990, p. 1). To learn science, it is necessary to use the specialized language of science in reading and writing, in reasoning and problem solving, and in guiding practical action in the laboratory and in daily life (Lemke, 1990). To use scientific language, students need to be given opportunities to participate in the discourse of conjecture, argument and challenge. In doing practical work, it is necessary to examine the relationship between evidence and claims and to allow students to attempt to justify their views while others express doubts and suggest alternatives. This type of communication, which reflects authentic scientific communication, helps students not only to clarify their concepts but also to understand the norms of language in the scientific community. Researchers in the history and philosophy of science see argument and argumentative practice as a core activity of scientists (Franklin, 1986; Fuller, 1997; Pera, 1994; Taylor, 1996). Science as argument involves engaging students in ways of talking that scientists use in generating, refining and communicating their ideas as well as i

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[286874],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。