The design of low-power temperature acquisition device
One. the composed of system of temperature acquisition devices
The system is composed of PIC18F452(MCU)、 Power supply module、 Temperature Sensor、 Amplifier circuit、 External data memory circuit、 The low voltage detection circuit of Liquid crystal display. As shown in Figure(1):
Figure(1) The principle diagram of system block
Two. the hardware design
- The working principle of the system:
First, setting communication through the PC software and data acquisition system, set sampling time interval and the number of sampling points of each interval, achieving temperature acquisition by using the A/D converter sampling thermistor. Going into power down state automatically after the end of the data sampling system until the next sampling start every time, this design ensures that the lowest power consumption for battery-powered systems. The system from the low power state to the working state is mainly completed by the 24LC128 timer.
(2) Experimental circuit hardware system is shown in Annex 1.
(3) Selecting system devices
1. Selecting EEPROM chip
Due to the storage within 30 days of temperature data,and the system established the sampling period for 10min/times, so the 30 days required to store 6*24*30*8 = 34560 data.A data accounts 3 bytes in PIC18F452, in a word, the storage space required for 3*34560=103680B=101.25K. So we choose 24LC128 chip.
The pin functions and features of 24LC128 chip
Parameter name |
Numerical |
Density |
128K bits(x8) |
Op. Volt Range(V) |
2.5 to 5.5 |
Max. Clock Frep |
400 KHZ |
Page Size (bytes) |
64 |
Write Protect |
Array |
Temp Range(℃) |
-40℃ to 125℃ |
Endurance |
1000000 |
Name |
Function |
A0,A1,A2 |
User Configurable Chip Selects |
Vss |
Ground |
SDA |
Serial Data |
SCL |
Serial Clock |
WP |
Write Peotect Input |
VCC |
1.8 to 5.5V(24AA128) |
2.5 to 5.5V(24LC128) |
|
4.5 to 5.5V(24C128) |
2. The choice of power battery
On the system power budget, to predict battery life and to choose the right battery.
The following table (one) is the system to produce power consumption by woring in different mode.
Table (one)
Mode |
The mode of time(ms) |
Electric current(mA) |
Power Current*time(mA*second) |
||
By device |
Total model |
||||
Dormancy MCU dormanted Sensor closed EEPROM closed |
1989 |
0.00005 0 0 |
5.00E-05 |
9.95E-05 |
|
Initialization MCUdormanted Sensor opend EEPROMclosed |
1 |
0.000065 0.0165 0 |
1.66E-02 |
1.66E-05 |
|
Sensor samling MCU ran Sensor closed EEPROM closed |
1 |
0.048 0.0165 0 |
6.45E-02 |
6.45E-05 |
|
Data conversion MCU ran Sensor closed EEPROM closed |
1 |
0.48 0 0 |
4.80E-02 |
4.80E-05 |
|
Storage MCU ran Sensor closed EEPROM opened |
8 |
0.048 0 1 |
1.05E 00 |
8.38E-03 |
|
E in total |
2000 |
/ |
/ |
8.61E-03 |
Average current:I== 8.61e-3/2000e-3=0.0043Ma.
Thereby, we can get the length of different battery life, as shown in the following table (two) :
Table (two)
Battery |
Capacity(mAh) |
Life |
|||
Hours |
Days |
Months |
Years |
||
CR1212 |
18 |
4180 |
174 |
5.8 |
0.48 |
CR1620 |
75 |
17417 |
726 |
24.2 |
1.99 |
CR2032 |
220 |
51089 |
2129 |
71.0 |
5.83 |
AAA Alkaline battery |
1250 |
290276 |
12095 |
403.2 |
33.14 |
AA Alkaline battery |
2890 |
671118 |
27963 |
932.1 |
76.61 |
Lithium-ion battery |
850 |
197388 |
8224 |
274.1 |
22.53 |
Table (two) apparently is available for the following conclusion, battery power supply which is suitable for the field of temperature acquisition for AAA alkaline battery of 3V, AAA alkaline battery is not only used for a long time for field measurement , but also low resistance can reduce the self discharge of battery, to achieve low power consumption.
-
剩余内容已隐藏,支付完成后下载完整资料
低功耗温度采集装置的设计
一、温度采集装置的系统组成
整个系统包括PIC18F452(MCU)、电源模块、温度传感器、放大电路、外部数据存储电路、液晶显示器低压检测电路。如图(1)所示:
图(1)系统组成原理框图
二、硬件设计
(1)系统的工作原理:
首先通过PC机软件与数据采集系统进行通信设置,设置好每个工作区间的采样时间间隔和采样点数,通过采用A/D转换采样热敏电阻阻值实现温度采集。每次系统数据采样结束后自动进入掉电状态直到下一次采样开始,这种设计确保在电池供电系统的功耗最低。系统从低功耗状态变为工作状态主要是由24LC128定时器完成。
(2)硬件系统的实验电路如附件1所示。
(3)系统器件的选择
1.EEPROM芯片的选择
由于要存储30天内的温度数据,且系统所设的采样周期为10min/次,则30天需要存储6*24*30*8=34560个数据。而在PIC18F452中一个数据占3个字节,也即所需存储空间为3*34560=103680B=101.25K,因此选用24LC128芯片。
24LC128芯片管脚功能及特性
Name
Function
A0,A1,A2
User Configurable Chip Selects
Vss
Ground
SDA
Serial Data
SCL
Serial Clock
WP
Write Peotect Input
VCC
1.8 to 5.5V(24AA128)
2.5 to 5.5V(24LC128)
4.5 to 5.5V(24C128)
参数名称
数值
Density
128K bits(x8)
Op. Volt Range(V)
2.5 to 5.5
Max. Clock Frep
400 KHZ
Page Size (bytes)
64
Write Protect
Array
Temp Range(℃)
-40℃ to 125℃
Endurance
1000000
2.供电电池的选择
对系统功耗的预算,来预测电池的寿命及选择合适的电池。
以下表(一)即为系统工作在不同模式时候电量的消耗。
表(一)
模式
处于模式的时间(ms)
电流(mA)
电量
电流*时间(mA*秒)
按器件
模式总共
休眠
MCU休眠
传感器关闭
EEPROM关闭
1989
0.00005
0
0
5.00E-05
9.95E-05
初始化
MCU休眠
传感器开启
EEPROM关闭
1
0.000065
0.0165
0
1.66E-02
1.66E-05
对传感器采样
MCU运行
传感器关闭
EEPROM关闭
1
0.048
0.0165
0
6.45E-02
6.45E-05
数据换算
MCU运行
传感器关闭
EEPROM关闭
1
0.48
0
0
4.80E-02
4.80E-05
存储
MCU运行
传感器关闭
EEPROM开启
8
0.048
0
1
1.05E 00
8.38E-03
E总共
2000
/
/
8.61E-03
平均电流:I== 8.61e-3/2000e-3=0.0043Ma。
从而由此可得不同电池所使用寿命的长短,如表(二)所示:
表(二)
电池
容量(mAh)
寿命
小时
天
月
年
CR1212
18
4180
174
5.8
0.48
CR1620
75
17417
726
24.2
1.99
CR2032
220
51089
2129
71.0
5.83
碱性AAA电池
1250
290276
12095
403.2
33.14
碱性AA电池
2890
671118
27963
932.1
76.61
锂离子电池
850
197388
8224
274.1
22.53
由表(二)显然可得,适合于野外温度采集的供电电池为3V的碱性AAA电池,碱性AAA电池不仅使用时间长适合野外测量而且低内阻可减少电池的自放电,实现低功耗。
- 最小系统组成:
石英晶体振荡电路(电容值越小,电路越易起振)、外部中断按键电路(与 PIC18F452的I/O相接,经使用较大的上拉电阻大大的减少功耗)、复位电路以及下载口电路,其中3V的电源供电,经上拉电阻实现了电路的低功耗。其电路如图(二)所示:
图(二)
- 外部数据存储模块
24LC128芯片的功能及特性在芯片选择时已经介绍过,此处不再重复。此电路实现的是对外部采集的数据进行存储,其用I/O口控制数据存储电路同样实现了低功耗的设计。其组成电路如图(三):
图(三)
- 低压报警电路与液晶显示模块
采用FYD12864-0402B带中文字库的点阵型液晶,其电压供电电压范围为: 3.0-5.5V。符合本系统要求,并通过晶体管实现背光灯的控制和通过I/O供电,实现了低功耗。组成电路如图(四)所示:
图(四)
- 温度采集装置
工作原理:
热敏电阻、运算放大器及A/D转换共同构成多点温度采集电路。而A/D转换由 PIC18F452内部完成。其外部电路图如图(五)所示。
图(五)
随着外界温度的变化,热敏电阻阻值发生变化,热敏电阻两端的电压发生变化,再有电压跟随器将改变的电压值传送入PIC18F452芯片实现A/D转换。这样系统就实现了电压→ 电阻→温度。实验电路中我采用的每个LM324芯片包含有四个电压跟随器,故本实验只需要两个LM324芯片即可。温度采集装置电路如图(六)所示:
图(六)
1.热敏电阻厂家提供数据手册
NTC热敏电阻温度—阻值特性表
T(℃)
R(KΩ)
T(℃)
R(KΩ)
T(℃)
R(KΩ)
-8℃
32.6KΩ
0℃
24.1KΩ
2℃
22.1KΩ
5℃
19.3KΩ
10℃
15KΩ
15℃
12.5KΩ
20℃
9.7KΩ
25℃
8.1KΩ
30℃
6.45KΩ
35℃
5.49KΩ
40℃
4.45KΩ
45℃
3.91KΩ
50℃
3.17KΩ
55℃
2.8KΩ
60℃
2.45KΩ
65℃
1.86KΩ
70℃
1.38KΩ
- NTC负温度系数热敏电阻工作原理
NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[505648],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。