Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model
We propose a wideband multiple-input multiple-output (MIMO) car-to-car (C2C) channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS) and non-LOS (NLOS) propagation environments. The proposed channel model assumes an infinite number of scatterers , which are uniformly distributed in two rectangular areas located on both sides of the street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF), the two-dimensional (2D) space CCF, the time-frequency CCF (TF-CCF), the temporal auto correlation function (ACF), and the frequency correlation function (FCF). An efficient sum-of-cissoids (SOCs) channel simulator is derived from the reference model. It is shown that the temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows us to study the effect of nearby street scatterers on the performance of C2C communication systems.
- Introduction
C2C communications is an emerging technology, which receives considerable attention due to new traffic telematic applications that improve the efficiency of traffic flow and reduce the number of road accidents [1]. The development of C2C communication technologies is supported in Europe by respected organizations, such as the European Road Transport Telematics Implementation Coordinating Organization (ERTICO) [2] and the C2C Communication Consortium (C2C-CC) [3]. In this context, a large number of research projects focusing on C2C communications are currently being carried out throughout the world.
In C2C communication systems, the underlying radio channel differs from traditional fixed-to-mobile and mobile-to-fixed channels in the way that both the transmitter and the receiver are in motion. In this connection, robust and reliable traffic telematic systems have to be developed and tested, which calls for new channel models for C2C communication systems. Furthermore, MIMO communication systems can also be of great interest for C2C communications due to their higher through put [4]. In this regard, several MIMO mobile-to-mobile (M2M) channel models have been developed and analyzed under different scattering conditions induced by, for example, the two-ring model [5], the elliptical model[6], the T-junction model [7], and the geometrical street model [8, 9]. A 2D reference model for narrowband single-input single-output (SISO) M2M Rayleigh fading channels has been proposed by Akki and Haber in [10, 11]. Simulation models for SISO M2M channels have been reported in [12,13]. In [5, 14, 15], the 2D reference and simulation models have been presented for narrowband MIMO M2M channels. The proposed model in [15] combines the two-ring model and the elliptical model, where a combination of single- and double-bounce scattering in LOS propagation environments is assumed.
All aforementioned channel models are narrowband M2M channel models. In contrast with narrowband channels, a channel is called a wideband channel or frequency selective channel if the signal bandwidth significantly exceeds the coherence bandwidth of the channel. Owing to increasing demands for high data rate wideband communication systems employing MIMO technologies, such as MIMO or thogonal frequency division multiplexing (OFDM) systems, it is of crucial importance to have accurate and realistic wideband MIMO M2M channel models. According to IEEE 802.11p [16], the dedicated frequency bands for short-range communications [17] will be between 5770 MHz and 5925 MHz depending on the region. The range 5795–5815MHz will be devoted to Europe, while 5850–5925MHzand 5770–5850MHz will be assigned to North America and Japan, respectively. Consequently, a large number of C2C channel measurements have been carried out at different frequency bands, for example, at 2.4GHz [18], 3.5GHz[19], 5GHz [20, 21], 5.2GHz [22], and 5.9 GHz [23]. Real world measurement campaigns for wideband C2C channels can be found in [24–27]. In the literature, there exist several papers [28–30] with the focus on the modeling of wideband MIMO M2M channels. A reference model derived from the geometrical T-junction scattering model has been proposed in [7] for wideband MIMO vehicle-to-vehicle(V2V) fading channels. In [29], a three-dimensional(3D) model for a wideband MIMO M2M channel has been studied. Its corresponding first- and second-order statistics have been investigated and validated on the basis of real world measurement data. In the same paper, it has been shown that 3D scattering scenarios are more realistic than 2D scattering scenarios. However, 2D scattering models are more complexity efficient, and they provide a good approximation to 3D scattering models [31]. For those reasons, we propose in our paper a 2D street scattering model.
In the literature, numerous fundamental channel models with different scatterer distributions, such as the uniform, Gaussian, Laplacian, and von Mises distribution, have been proposed to characterize the angle-of-departure (AOD) and the angle-of-arrival (AOA) statistics. In [32], the author studied the effect of Gaussian distributed scatterers on the channel characteristics in a circular scattering region around a mobile station. The spatial and temporal properties of the first arrival path in mu
剩余内容已隐藏,支付完成后下载完整资料
基于几何街散射模型在宽带MIMO车对车通道模型的设计
我们提出了一个宽带多输入多输出(MIMO)的车对车(C2C)的信道的基础上的几何街道散射模型的模型。从几何模型开始,在MIMO参考信道模型的单弹跳散射线的视线(LOS)和非LOS(NLOS)传播环境的假设下导出。所提出的信道模型假定散射,这是在位于该街道的两侧的两个长方形的区域均匀分布的无限数量。 解析解呈现为空间-时间-频率互相关函数(STF-CCF),二维(2D)空间的CCF,时间 - 频率的CCF(TF-CCF),时间自相关函数(ACF),和频率相关函数(FCF)。一个高效的加总cisoids(SOC)的信道模拟器从基准模型导出。它表明,在时间ACF与SOC信道模拟器配合的FCF很好的参考模型的相应的相关的功能。为了验证所提出的信道模型中,平均多普勒频移和参考模型的多普勒扩展已匹配真实世界的测量数据。为了验证所提出的信道模型,平均多普勒频移和参考模型的多普勒扩展已匹配真实世界的测量数据。比较结果表明理论和测量之间的良好的一致性,这证实所导出的参考模型的有效性。所提出的基于几何的信道模拟器可以让我们学习的附近街道上的散射C2C通信系统的性能的影响。
1.简介
C2C通信是一种新兴技术,它能接收归因于改善交通流的效率和减少道路交通事故的一些新的交通远程信息处理应用,而得到相当重视[1]。C2C的通信技术的发展,支持在欧洲备受推崇的机构,如欧洲陆路运输远程信息处理执行协调组织(ERTICO)[2]和C2C的通讯联盟(C2C-CC)的[3]。在此背景下,大量的研究项目,重点C2C通信目前正在开展世界各地。
在C2C通信系统中,底层的无线电信道不同于传统的固定到移动和移动到固定的方式信道,这两个发射器和接收器都在运动。在这方面,坚固和可靠的通信远程信息处理系统必须开发和测试,这要求对C2C通信系统的新渠道模式。此外,MIMO通信系统,也可用于通信的C2C极大的兴趣,因为它们更高的吞吐量[4]。在这方面,一些MIMO方式的移动站到移动站(M2M)信道模型已经开发并引起不同散射的条件下进行分析,例如,两环模型[5],所述的椭圆模型[6],T-结模型[7],和几何模型街[8,9]。在[10,11]已经提出了通过Akki和哈伯窄带单输入单输出(SISO)M2M瑞利衰落信道A的2D参考模型。对于SISO M2M通道模拟模型已报道[12,13]。在[5,14,15],所述的2D参考和模拟模型已经提出了用于窄带MIMO M2M频道。在[15]中的该模型综合了两环模型和椭圆形模型,假设在LOS传播环境单双反弹散射的组合在那里。
所有上述渠道模式是窄带M2M信道模型。与窄带信道的对比, 一个信道被称为宽带信道或频率选择性信道,如果信号带宽显著超过信道的相干带宽。由于日益增加的需求对于高数据率的宽带通信系统中采用MIMO技术,如MIMO正交频分复用(OFDM)系统,它是至关重要的,以获得准确的和现实的宽带MIMO M2M信道模型。根据IEEE802.11p标准[16],所述专用频带用于短距离通信[17]将5770MHz和5925MHz之间根据地区。范围5795-5815MHz将用于欧洲,而5850-5925MHz和5770-5850MHz将分别分配到北美和日本。因此,大量的C2C信道测量已进行了在不同的频带,例如,在2.4GHz的[18],3.5GHz的[19],5GHz的[20,21],5.2GHz[22],和5.9 GHz的[23]。实战测量活动的宽带C2C渠道可以在[24-27]中找到。在文献中,存在多篇论文[28-30],其重点在于宽带MIMO M2M信道的建模。从几何丁字路口散射模型导出的参考模型已经提出了在[7]用于宽带MIMO车辆对车辆(V2V)衰落信道。在[29],对一个三维(3D)模型的宽带MIMO M2M信道进行了研究。其相应的第一级和第二级的统计数据进行了研究和验证是以现实世界的测量数据为基础。在相同的资料中,它已显示3D场景散射比2D散射场景更逼真。然而,2D散射模型是更复杂高效,它们提供了良好的近似三维散射模型[31]。由于这些原因,我们建议在我们的报纸用二维街道散射模型。
在文献中,不同的散射分布,如均匀,高斯,拉普拉斯,和冯米塞斯分发众多基本信道模型中,已经提出了表征角度的出发(AOD)和角度的到达(AOA)的统计数据。在[32]中,作者研究了信道特性的高斯分布的散射体在圆形散射区域的移动站周围的影响。在多径环境下的第一到达路径的空间和时间特性也已在[32]进行分析。[9]的作者假设在两侧的街道,其中散射的无限数量是均匀分布的矩形散射区域。它已经观察到多普勒功率谱密度(PSD)的形状类似于一个高斯函数,如果散射区域的宽度是非常大的。
相反,我们以前的工作中[9],其中的重点是一个参考的信道模型的推导窄带SISO C2C渠道,我们在本文中通过相同的几何街道散射模型出发设计了宽带MIMO C2C渠道模式。我们专注于宽带参考信道模型假定散射无限数量被均匀地在两个矩形区域分布的统计特性。在街道环境中的无线电传播现象是由一个广义平稳非相关散射过程,这里另外一个LOS分量是被考虑到的。参考模型是来自于几何街道散射模型并假设AOD和AOA是依赖由于单弹跳散射。为了说明的C2C信道的性质,我们采取了发射机和接收机的移动性是理所当然的。
在我们的模型中,我们考虑一个2D街道散射环境仍由保证参考模型和测量的信道之间的良好匹配,以降低计算成本。一个典型的传播情形为所提出的模型示于图1,其中的建筑物和树木被视为散射物体。这样一个典型的密集的城市环境中的场景使我们能够假定本地散射体都在一个特定的区域均匀分布的。一个解析表达式将被衍生为在STF-CCF从该二维空间的CCF,TF-CCF,暂存的ACF,并且该FCF可直接得到。为了验证所提出的参考模型,平均多普勒频移和参考模型的多普勒扩展已匹配所测量的信道的相应数量中描述[25]对于不同的传播环境,例如城市,农村,和公路区域。此外,我们已经生成了来源于参考模型的SOC通道模拟器。结果表明,所设计的信道模拟器的基本参考模型相对于时间ACF和FCF匹配。
本文的其余部分安排如下。第2节描述的几何街道散射模型。在第3节,参考信道模型从几何街上模型导出。第4节分析了参考模型的相关特性,如STF-CCF,二维空间的CCF,TF-CCF,暂存的ACF和FCF。在基于测量的模型参数和所述特征量描述多普勒效应的计算将在第5节所讨论的。第6节简要介绍了从参考模型得出的仿真模型。阐述一些发现为参考模型和相应的仿真模型的相关函数计算结果的说明是第7节的主题。最后,第8节是本文章的结论。
2.几何街散射模型
本节简要介绍了几何街道散射模型的宽带MIMO C2C渠道。所提出的几何模型描述在城市地区,那里的散射体位于在街道的两侧的两个矩形区域,如图2中的散射环境。我们考虑到矩形网络由行和列形成,其中长度和矩形网格的宽度分别由LA = A1 A2和Bi(i = 1,2)表示形成矩形网格。位于第n行的第m列中的散射体被表示为S(mn)(M =1,2,...,M,N=1,2,。。。,N)。假定本地散射体S(mn)中的矩形被均匀地分布。图2中的符号的MST和MSR分别代表所述移动发射器和移动接收器。符号D表示发射机和接收机之间的距离的标量投影到x轴。发射机(接收器)位于从街道的左侧的距离YT1(YR1),并在一个距离YT2(YR2)从街道的右手侧。发射机和接收机是在运动中,并配有分别的MT发射机天线元件和MR接收器天线元件。天线元件的间距在发射器和接收器之间分别通过delta;T和delta;R。符号alpha;T(MN)和alpha;R(MN)分别表示AOD和AOA分别。角度gamma;T(gamma;R)描述了发射器(接收器)天线阵列的倾斜角度。此外,假定发射机(接收机)与速度VT(VR)移动通过的运动phi;VT(phi;VR)的角度所确定的方向。
3.参考模型
3.1.推导的参考模型
在这一节中,我们推导出的LOS和NLOS传播条件的假设下所述MIMO信道的C2C的参考模型。从图2中,我们认识到,发射器的(mn)均匀平面波是从第l天线元件AT(l)发射(L =1,2,...,MT)行进通过本地散射体S(MN)前冲击在接收器的第k天线元件的AR(K)(K = 1,2,...,MR)。参考模型是基于这样的假设的本地散射体既矩形区域内的数目是无限的,即,M,N→infin;。参考模型的时间,空间,和频率特性由MRtimes;MT的信道矩阵H(F,T)=[HKL(F,t)] MRtimes;MT,其中HKL(F,t)表示确定信道为第l发射机天线元件之间的链路的时变传递函数(TVTF)AT(l)和第k接收器天线元件的AR(K)。所述TVTF HKL(F,t)可如下表示为扩散分量和LOS分量的叠加:
(1)
其中H KL DIF(f,t)和H KLLOS(f,t)分别代表着信道的扩散和LOS分量。需要注意的是单弹跳散射部件比双反弹散射部件承受更多的能量。因此,在我们的分析中,我们只考虑到通过单弹跳散射效应来建模扩散分量H KL DIF(f,t)的,这是根在[28,33]所提出的假设所一致的。从图2中所示的几何街道散射模型,我们可以推导出TVTF的扩散分量,这会导致以下表达式:
(2)
同时又有:
(3)
(4)
(5)
(6)
(7)
(8)
在(6)和(7)中,符号fTmax= VT /lambda;和fRmax= VR/lambda;分别表示与发射机的移动和接收器,相关联的最大多普勒频率,并且lambda;是波长。在(2)中符号的CR表示的是莱斯因子,其被定义为LOS分量的功率,扩散分量的功率之比,即,CR = E{|H kl LOS ( f rsquo;, t)|2}/E{|H kl DIFk( f rsquo;, t)|2}.在(2)中相位theta;mn表示由散射器S(MN)引入的相移。假定相位theta;mn是独立的,同分布(i.i.d.)的随机变量,其在区间[0,2pi;)均匀分布。符号tau;rsquo;kl (mn) 和 Co分别代表的扩散分量的传播延迟和光的速度。在(8)中,所述量为D T (l,mn)表示从第l发射机天线元件A T (l),到达散射S(mn)的距离,而D R (mn,k)为散射S(mn)和第k接收器天线元件的AR(K)的距离。假设(MTminus; 1)delta;Tlt;lt; min{yT1, yT2}和 (MRminus; 1)delta;Rlt;lt; min{yR1, yR2}。这些假设,一同近似为asymp; 1 x/2 (xlt;lt; 1),并能够让我们来近似如下两个距离D T (l,mn) 和 D R (mn,k) :
(9)
(10)
其中,D T (mn) 和 D R (mn)分别由D T (mn) = yT1 / sin(alpha;T(mn) T ) 和 D R (mn) = yR1 / sin(alpha;R (mn) )来给出。值得注意的是,人们还可以发现文章[11,34],其中仅双反弹散射假定为M2M通信。然而,在[15]中按照类似的方法,我们可以扩展我们的分析在以单反弹散射为基础的双重反弹散射的情况
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[505440],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。