INTERNATIONAL JOURNAL OF CLIMATOLOGY
Int. J. Climatol. 34: 1785 – 1797 (2014)
Published online 8 August 2013 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/joc.3801
Possible influence of AAO on North Korean rainfall in August
Ki-Seon Choi,a Su-Bin Oh,b Do-Woo Kimc and Hi-Ryong Byunb*
a National Typhoon Center, Korea Meteorological Administration, Jeju, South Korea
b Department of Environmental Atmospheric Sciences, Pukyong National University, Busan, South Korea
c Forecast Research Laboratory, National Institute of Meteorological Research, Seoul, South Korea
ABSTRACT: This study found a positive correlation between the August rainfall in North Korea and Antarctic Oscillation (AAO) in August. Causes of increasing rainfall in the positive AAO phase are (1) the increasing frequency of tropical cyclones that land in or affect the Korean Peninsula, (2) the reinforcement of Australian high (AH) in the Southern Hemisphere, and (3) atmospheric instability at all levels in August in North Korea. The reinforcement of AH forms an anomalous cross-equatorial flow in the western Pacific and plays a decisive role in the northward development of the subtropical western North Pacific high (SWNPH). Furthermore, large volumes of warm and humid air are supplied to North Korea owing to this development. As a result, atmosphere in North Korea becomes unstable, and it is found that the reinforcement of anomalous warm sea surface temperature (SST) in the middle latitude of East Asia is another cause of the instability.
KEY WORDS Antarctic Oscillation; rainfall; tropical cyclone; Australian high
Received 20 May 2012; Revised 13 November 2012 and 10 April 2013; Accepted 5 July 2013
Introduction
August in South Korea is the month that has the largest rainfall in a year. August is very important because the second Changma falls in this month, and if rainfall is insufficient during this month, it may cause drought in the autumn of the same year and even in spring next year (Byun and Lee, 2002). Furthermore, the frequency of tropical cyclones (TCs) landing in or affecting the Korean Peninsula is also the highest in August, and plays a decisive role in the variation of rainfall in August (Choi and Kim, 2007; Ahn et al., 2010).
There are a considerable number of studies addressing large-scale atmospheric circulations associated with sum- mer rainfall in South Korea. To summarize them briefly, the years with large summer rainfall have been found to have such characteristics as the development of subtrop- ical western North Pacific high (SWNPH) (Lim, 1997; Yun et al., 2001; Ha et al., 2003), continuous heating of the East Asian continent (Lu, 2002), the develop- ment of lower-level anomalous anticyclone in the East Asian continent (Ho et al., 2003), and the reinforce- ment of lower and upper-level jets (Ha et al., 2003). Another study insisted that when SWNPH is developed, Changma finishes late and the summer rainfall increases (Lu, 2002). On the other hand, the years with small
* Correspondence to: H.-R. Byun, Department of Environmental Atmo- spheric Sciences, Pukyong National University, Daeyeon 3-Dong Nam- Gu Busan 608-737, South Korea. E-mail: hrbyun@pknu.ac.kr
summer rainfall have been found to have such character- istics as broad snow cover in the Northern Hemisphere in late autumn (October to November) preceding year (Choi et al., 1998), high genesis frequency of TCs in the western North Pacific (Choi et al., 2008), and the rapid weakening of the East Asian Jet (Lu, 2002).
It is expected that North Korea will have similar vari- ations in summer rainfall because of its similar geo- graphical location as South Korea, but not much has been known about the meteorological research results of North Korea including summer rainfall variations. Choi et al. (2010) demonstrated through empirical orthogonal function (EOF) analysis that the summer rainfall varia- tions of South and North Koreas have the out-of-phase relationship which accurately appears with the Military Demarcation Line as the boundary line between them. In particular, they emphasized that the summer rainfall in North Korea has been sharply decreasing from the mid-1990s.
This study intends to show that the August rainfall in North Korea is closely related to the Antarctic Oscilla- tion (AAO) in the same month. AAO is a representative annular mode circulation that appears in the Southern Hemisphere during boreal summer and is characterized by large-scale seesaw oscillation in atmospheric circula- tion between the middle and high latitudes of the South- ern Hemisphere (Kidson, 1988; Gong and Wang, 1999; Thompson and Wallace, 2000). It has been found that AAO not only affects the various climate changes in the Southern Hemisphere (Thompson and Wallace, 2000;
2013 Royal Meteorological Society
Hall and Visbeck, 2002; Kwok and Comiso, 2002; Sil- vestri and Vera, 2003; Reason and Rouault, 2005; Hendon et al., 2007), but also influences the summer rainfall vari- ations in the East Asia (Gao et al., 2003; Xue et al., 2004; Fan, 2006; Wang and Fan, 2007; Sun et al., 2009) and in other regions (Sun, 2010; Sun et al., 2010) through tele- connection pattern. However, these studies are limited in that they only investigated the rainfall changes in the Yangtze River valley regarding the correlation between AAO and the summer rainfall in East Asia. A com- mon finding of these studies is that Australian high (AH) which is reinforced in the positive AAO phase plays the role of a bridge between AAO in the Southe
剩余内容已隐藏,支付完成后下载完整资料
国际气候学杂志
诠释。J. Climatol。34:1785 - 1797(2014)
2013年8月8日在Wiley Online Library(wileyonlinelibrary.com)在线发布.DOI:10.1002 / joc.3801
AAO对8月份朝鲜降雨的可能影响
Ki-Seon Choi,aSu-Bin Oh,bDo-Woo Kimc和Hi-Ryong Byunb*
a韩国济州韩国气象局国家台风中心
b韩国釜山釜庆国立大学环境大气科学系
c韩国首尔国家气象研究所预测研究实验室
摘要:本研究发现,朝鲜的8月降雨量与8月份的南极涛动(AAO)呈正相关关系。正AAO阶段降雨量增加的原因是:(1)登陆或影响朝鲜半岛的热带气旋频率的增加,(2)南半球澳大利亚高压(AH)的增强,以及(3)在朝鲜8月大气不稳定性的作用。AH的加强形成了西太平洋的异常跨赤道气流,对副热带西北太平洋高压(SWNPH)的北部发育起着决定性的作用。此外,这种发展向朝鲜供应了大量温暖潮湿的空气,导致朝鲜的大气不稳定,并且发现东亚中纬度的异常暖海表面温度(SST)的加强是不稳定的另一个原因。
关键词 南极涛动;雨量;热带气旋;澳大利亚高压
介绍
韩国8月是一年中降雨量最大的月份。因为8月存在第二个昌马降雨,如果本月降雨量不足,可能会导致同年秋季甚至明年春季的干旱(Byun和Lee,2002)。此外,登陆或影响朝鲜半岛的热带气旋(TC)的频率在8月也是最高的,并且在8月的降雨变化中起着决定性的作用(Choi和Kim,2007; Ahn等,2010). 。
有相当多的研究涉及与韩国夏季降雨相关的大尺度大气环流。简要总结一下,夏季降雨量大的年份已经发现具有副热带西北太平洋高压(SWNPH)发展的特征(Lim,1997; Yun等,2001; Ha等,2003),东亚大陆的连续供暖(Lu,2002),东亚大陆低层异常反气旋的发展(Ho et al.,2003),以及下层和上层喷流的加强(Ha et al. ,2003)。另一项研究坚持认为,当SWNPH发展时,昌马会结束较晚,夏季降雨增加(Lu,2002)。另一方面,年变化开始变小。
北半球的夏季降雨已被发现具有在去年秋末(10月至11月)广泛积雪的特征(Choi等,1998),北太平洋西部TC的高发生频率(Choi等。,2008),以及东亚急流的快速弱化(Lu,2002)。
由于朝鲜与韩国的地理位置相似,预计朝鲜夏季降雨量也会有类似变化,但对朝鲜的气象研究结果(包括夏季降雨量变化)知之甚少。Choi等.(2010)通过经验正交函数(EOF)分析表明,南朝鲜和北朝鲜的夏季降水变化具有异相关系,其准确地出现在军事分界线作为它们之间的界线。他们特别强调了朝鲜的夏季降雨量从20世纪90年代中期开始急剧下降。
本研究旨在表明,朝鲜的8月降雨量与同月的南极涛动(AAO)密切相关。AAO是一个代表性的环状模式环流,出现在南半球中纬度和高纬度之间,其特征是南半球中高纬度地区大气环流中的大规模跷跷板振荡(Kidson,1988; Gong和Wang,1999; Thompson和Wallace,2000)。目前已经发现AAO不仅影响南半球的各种气候变化(Thompson和Wallace,2000;
Hall和Visbeck,2002年;Kwok和Comiso,2002年;Silvestri和Vera,2003年;Reason和Rouault,2005年;Hendon et al。,2007),也通过遥相关模式影响了东亚的夏季降雨变化(Gao等,2003; Xue等,2004; Fan,2006; Wang和Fan,2007; Sun等,2009) 和其他地区(Sun,2010; Sun等,2010)。然而这些研究的局限性在于他们只研究了长江流域的降雨变化,即AAO与东亚夏季降水的相关性。这些研究的一个共同发现是,在AAO正阶段加强的澳大利亚高压(AH),在南半球的AAO和东亚夏季风(EASM)之间起着桥梁的作用。特别是他们提到AH可以充分地作为EASM的预测因子,因为AH在前一个春季是显而易见的。就韩国而言,Choi等人。(2010)证明六月降雨量和昌马发生率由AAO控制,这一特征可以从前三月的AAO中找到。他们强调,在正的AAO中澳大利亚周围地区到赤道的方向的冷交叉赤道流动加剧,这反过来迫使SWNPH向北发展;这最终将雨带(昌马)向北推进。此外,一些研究分析了韩国夏季降雨与表明气候变化的气候指数之间的关系。Kim等人.(2007)通过多元线性回归的统计方法表明了韩国的7月降雨与赤道东太平洋的水平压力(SLP)呈正相关,而Choi等人.(2011)表明,韩国夏季降水与北太平洋涛动(NPO)呈负相关。本研究旨在了解朝鲜的夏季降雨是否受到AAO的影响。
第2节介绍了数据和分析方法。朝鲜降雨与AAO之间的相关性在第3节中进行了研究,在第4节中,研究了正AAO和负AAO相之间的差异。最后在第5节总结了本研究的结果。
数据和方法
-
-
数据
- 降雨数据
-
数据
本研究使用了过去30年(1981年至2010年)朝鲜26个气象观测站观测到的月总降雨量。截至1981年,朝鲜的气象观测站数量为12个,自1981年以来增加到26个(表1)。因此1981年之后的数据用于结果的可靠性。除朝鲜降雨数据外,8月份在东亚的258个气象站(中国146个,韩国61个,日本51个)的总降雨量除外,还使用了90个以西的干旱地区的数据。
-
-
- 再分析数据
-
与降雨数据一起,使用了国家环境预测中心 - 国家大气研究中心(NCEP-NCAR)(Kalnay等,1996; Kistler等,2001)同期的再分析数据集。对于参数而言使用位势高度(gpm),纬向和经向流动,速度势能(m2sminus;1),空气温度(◦C)和相对湿度(%)。这些数据的纬度和经度分辨率为2.5◦ times;2.5◦ ,垂直空间分辨率为17,从1948年至今可用。
times;
此外,还使用了从NOAA卫星系列中检索到的国家海洋和大气管理局(NOAA)内插输出长波辐射(OLR)数据。这些数据可从1974年至今在气候诊断中心(CDC)获得,但缺失的时间为1978年3月至12月。有关OLR数据的更多信息,请参阅CDC网站(http://www.cdc) .noaa.gov)和Liebmann和Smith的论文(1996)。
该研究还使用了NOAA扩展的重建月海表温度(SST)(Reynolds等,2002)。这些数据的纬度和经度分辨率为2.0◦ times;2.0◦ ,可从1854年至今提供。
-
-
- 热带气旋(TC)数据
-
为了研究TC对朝鲜8月总降雨量变化的影响,本研究使用了东京台风中心区域专业气象中心(RSMC)的TC最佳跟踪档案。这些数据包含TC名称,纬度和经度位置,最小表面中心压力和最大持续风速(MSWS;平均最大风速为10分钟,最接近5 kts)等信息,间隔为6 h。一般来说根据MSWS,TC分为四个等级:热带低压(TD; MSWS lt;34 kts),热带风暴(TS; 34 ktsle; MSWS le;47 kts),强烈热带风暴(STS; 48 kts le;MSWSle; 63 kts)和台风(TY; MSWS ge;64 kts)。目前不仅使用了这四个等级的TC而且还使用了从TC进行分析的温带气旋(ET),因为ET也对东亚的中纬度地区造成了相当大的破坏。
-
-
- AAO指数
-
本研究使用NOAA气候预测中心(CPC)制作的AAO指数(HTTP:// WWW。 cpc.ncep.noaa.gov)。AAO指数是通过经验正交函数(EOF)分析获得的,使用南半球20纬度的月平均1000 hPa(或700 hPa)高度异常。在NCEP-NCAR再分析数据集中去除季节周期的月平均高度场用于纬度和水平分辨率2.5times;2.5
表1.朝鲜26个气象观测站的信息
站 地理特征
名称 |
数 |
纬度◦N) |
经度◦E) |
观察开始的一年 |
|
森邦 |
47 003 |
42.32 |
130.40 |
1973 |
|
桑吉永 |
47 005 |
41.82 |
128.32 |
1981 |
|
清津 |
47 008 |
41.78 |
129.82 |
1973 |
|
忠港 |
47 014 |
41.78 |
126.88 |
1973 |
|
江界 |
47 020 |
40.97 |
126.6 |
1973 |
|
丰山 |
47 022 |
40.82 |
128.15 |
1981 |
|
金策 |
47 025 |
40.67 |
129.20 |
1973 |
|
水丰 |
47 028 |
40.45 |
124.93 |
1981 |
|
长进 |
47 031 |
40.37 |
127.25 |
1981 |
|
新义州 |
47 035 |
40.10 |
124.38 |
1973 |
|
龟城 |
47 037 |
39.98 |
125.25 |
1981 |
|
熙川 |
47 039 |
40.17 |
126.28 |
1981 |
|
咸兴 |
47 041 |
39.93 |
127.55 |
1973 |
|
新浦 |
47 046 |
40.03 |
128.18 |
1981 |
|
安居 |
47 050 |
39.62 |
125.65 |
1981 |
|
阳德 |
47 052 |
<!-- 剩余内容已隐藏,支付完成后下载完整资料
资料编号:[18293],资料为PDF文档或Word文档,PDF文档可免费转换为Word |
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。
您可能感兴趣的文章
- 气候变化对径流影响研究中多个gcm、统计降尺度和水文模型的比较与评价外文翻译资料
- 蒙古高原与青藏高原对北太平洋西风急流的影响外文翻译资料
- 用RAMS-CMAQ模拟北京气溶胶对大气能见度的影响外文翻译资料
- 春季江淮流域多尺度气旋活动及其与降水异常的关系外文翻译资料
- 中国东部地区春季1壤湿度和夏季降水关系的统计分析外文翻译资料
- 长江流域降水变率的AMIP GCM模拟外文翻译资料
- 中国水汽变化及气溶胶的影响外文翻译资料
- 大西洋盆地及其相邻大陆地区气溶胶的CALIPSO衍生三维结构外文翻译资料
- 基于雨量计观测数据的登陆中国的热带气旋的降水日变化外文翻译资料
- 基于CloudSat数据的热带云属现象描述外文翻译资料