本科毕业设计(论文)
外文翻译
European Snow Cover Characteristics between 2000 and 2011Derived from Improved MODIS Daily Snow Cover Products
作者:Andreas J. Dietz *, Christoph Wohner and Claudia Kuenzer
国籍:Germany
出处:Remote Sens. 2012, 4, 2432-2454.
原文正文:
1. Introduction
Snow cover is an important variable for water availability [1], it influences the radiation budget of the Earth surface [2,3], and may cause natural disasters such as avalanches or floods after the melting process [4,5]. Within Europe especially in Norway, Sweden, and Switzerland, snow is an important source of freshwater for reservoirs and the subsequent production of electricity [6–8]. Climate change affects parameters such as snow cover duration (SCD), generally leading to its decrease, a delayed snow cover onset and earlier snow melt [9–12]. Between 1970 and 2004, SCD decreased for most of Northern and Eastern Europe [13,14] and is projected to decrease in the future [15]. Lower elevations are more vulnerable to a reduced SCD than mountainous terrain [16]. Possible changes also include fewer frost days, reduced snow depth, reduced snow water equivalent, changes in soil frost and snow-fed river systems [15,17–19]. The analysis of remotely sensed data allows for high temporal and high areal coverage of the land surface, therefore forming an ideal tool to observe status and dynamics of snow coverage [20].
The aim of this study is to generate a medium resolution snow cover inventory of Europe, including SCD as well as information about snow cover start (SCS) and snow cover melt (SCM). These parameters can provide information about the current status of snow cover characteristics on a continental scale and are a useful source for future climate change studies. Additionally, the results from single snow cover seasons can be used to identify areas with exceptionally long or short SCD and early or late SCS and SCM. Such abnormal events can have severe impacts on economy or the environment.
This study will fill a gap in currently available snow cover products, since they are available either in very coarse resolution (~25km or less) on a hemispherical scale [14,21] or in medium resolution (~500 m) only for single countries such as, e.g., Switzerland [22], Poland [23], or Norway [24]. The continental snow cover inventory presented here is the first medium resolution product for Europe that spans the full operational phase of MODIS (since 2000). Our datasets contribute to the satellite-based climate products as stated by GCOS concerning horizontal (1 km) and temporal (daily) resolution [25]. The extent of the included landmass covers nearly 6.3 million kmsup2;.
2. Base Data and Study Region
2.1. Satellite Data
We used the daily snow cover products MOD10A1 (from Terra MODIS, available since March 2000) and MYD10A1 (from Aqua MODIS, available since July 2002) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) to calculate snow cover parameters including SCD, SCS and SCM for Europe. The MODIS product is provided by the National Snow and Ice Data Center (NSIDC) and available for the whole globe. The spatial resolution is 500 m per pixel. Based on the Snowmap algorithm developed especially for MODIS [26], the accuracy of the daily snow cover data reaches 93% under clear sky conditions [27] as it was confirmed by several independent studies [28–33]. The Snowmap algorithm relies on MODIS bands 4 (0.545–0.565 micro;m) and 6 (1.628–1.652 micro;m) to calculate the Normalized Difference Snow Index (NDSI), which is most useful for detecting snow covered areas [34]. Since band 6 is non-functional on Aqua MODIS, band 7 (2.015–2.155 micro;m) is utilized to derive the snow cover product MYD10A1 [35]. We acquired and processed more than 102,000 single tiles of MOD10A1 [36] and MYD10A1 [37] for the years from 2000 to 2011 from the metadata and service discovery tool Reverb [38]. Though the data is available on a daily basis some days are missing from the time series (Table 1). The methods section will outline how we dealt with these missing observations.
Shuttle Radar Topography Mission (SRTM) data was also used for this study. The elevation information contained in the SRTM data was consulted to compare SCD with topography. Results are provided in Section 4. SRTM data was acquired from the CGIAR-CSI SRTM 90m Database [39].
2.2. Snow Depth Station Data
Snow depth information from the European Climate Assessment amp; Dataset Project (ECAamp;D) was utilized for accuracy assessment of our results [40]. This data originates from meteorological stations and includes mean daily snow depth measurements for the full time series from 2000 to 2011 [41]. 896 snow depth stations from this archive fall within our study area, mostly concentrated on the Netherlands and Norway (Figure 1). Several stations also exist for Germany, Sweden, Switzerland, and Slovenia but there is no snow depth data available, e.g., for France, England, Poland, or Finland. We used the blended version of the daily snow depth data: Gaps in this time series are filled based on nearby stations if they lie within 12.5 km horizontal and 25 m vertical distance [41].
2.3. Study Region
Figure 1 presents an overview of the study region, the position of processed MODIS tiles, as well as the extent and the intensity of polar darkness. The climate in Europe is diverse. Norway, Iceland, Finland and large parts of Sweden (north of ~60°N) are characterized by a humid snow climate. In this region, the longest SCD, early SCS and late SCM are expected. In Central Europe, Englan
剩余内容已隐藏,支付完成后下载完整资料
英语原文共 23 页,剩余内容已隐藏,支付完成后下载完整资料
资料编号:[272194],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。
您可能感兴趣的文章
- 带水印的GIS数字矢量地图质量监测外文翻译资料
- 基于多源地理数据的城市功能区识别——以中国郑州市为例外文翻译资料
- 北京医疗服务可及性的空间差异和影响机制:移徙者平等的视角外文翻译资料
- 利用巴基斯坦费萨拉巴德的光学多时相卫星数据进行陆地表面温度和土地利用土地覆盖变化的CA-马尔可夫链分析外文翻译资料
- 大都市地区植被净初级生产力(NPP)动态变化与城市化驱动力研究–以北京市为例外文翻译资料
- 公园缓解城市热岛效应的有效性–以亚的斯亚贝巴为例外文翻译资料
- 一种描述新罕布夏州肺癌发病空间格局的地理计算方法外文翻译资料
- 加拿大大温哥华地区极端炎热天气温度-死亡率关系的空间差异描述外文翻译资料
- 雅典地区气温和湿度对人体热舒适度的影响外文翻译资料
- 量化公共卫生实践和研究中的空间可及性:在现场酒精场所的应用,美国,2013年外文翻译资料