建筑规划中自动定量评估和优化能源与成本效率的规范化参考系统研究外文翻译资料

 2022-07-29 17:18:13

Towards a Normalized Reference System

in Building Construction Planning for Automated Quantitative Assessment

and Optimization of Energy and Cost E ciency

Gerald Zwettler1, Paul Track2,4, Florian Waschaurek3,4, Richard Woschitz2,4,

Elmar Hagmann3,4, and Stefan Hinterholzer1

1 School of Informatics, Communication and Media, Upper Austria University of Applied Sciences, Softwarepark 11, 4232 Hagenberg, Austria

{gerald.zwettler,stefan.hinterholzer}@fh-hagenberg.at

2 RWT PLUS ZT GmbH, Karlsplatz 2/6-7, 1010 Wien, Austria

{p.track,r.woschitz}@rwt.at

3 Dipl. Ing. Wilhelm Sedlak GmbH,

Quellenstraszlig;e 163, 1100 Wien, Austria

{waschaurek,hagmann}@sedlak.co.at

4 ARGE Innovation Bautechnik und Bauprozessoptimierung OG, Quellenstraszlig;e 163, 1100 Wien, Austria

Abstract. The conceivable future shortage in fossil resources and sav-ings in building construction engineering for competitiveness on the market are the ecological and economic stimulus for well-considered and optimized architecture and material choice to maximize the trade-o between cost and energy optimization. BauOptimizer construction plan-ning application allows monitoring and optimization of both, energy and cost e ciency from the very first planning iteration to the final design. Simulated building construction costs and the energy cost forecast for the next decades are linked together to establish a quantitative assessment of construction plan e ciency and further allowing to automatically eval-uate all possible planning variants by altering the construction types of the walls, the windows and all other modalities. Based on the solution space of planning variants and legal norms, a construction site specific scale for assessing the quality of a single construction plan compared to the theoretically most e cient design to achieve can be performed.

Keywords: modeling and simulation, energy and cost e ciency, multi-criteria optimization, computer-based design.

  • Introduction

The architectural and construction planning of a building has to balance between di erent aspects and diverse satisfaction of needs of the involved stakeholders. The architect wants to express his inspiration and all of his ideas, like jutties or shifted walls, as artistic spirit of the construction plan design without having

M.L. Reyes et al. (Eds.): IT Revolutions 2011, LNICST 82, pp. 39–57, 2012.

c Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

40 G. Zwettler et al.

to think about construction costs, expected energy demand and plain, e cient building shapes all the time. In contrast, the building owner wants a maximized net floor area to be achieved by optimally exploiting the available space of the building construction lot. An indispensable key aspect of todayrsquo;s architecture to consider is energy e ciency[1,2]. Although higher investments in insulation material typically go along with significantly increased construction costs of the building hull, amortization and repayment is typically expected to be achieved within the next couple of years, as the expected savings in heating demand re-lated energy costs sum up very fast over the years. Furthermore, norms and restrictions of the legislative body must be considered from the very first plan-ning phase to get the final design approved or be awarded a grant for ecologic architecture. For achieving a balanced building construction design, all of these aspects must be considered from a very early planning stage. The traditional process of architectural planning, illustrated in Fig. 1(a), emphasizes the artistic freedom at the early stages. The importance and relevance of the key aspects, construction and energy costs, and related legislative restrictions grows in the later planning phases. Not considering the entire model from the very begin-ning increases the risk of cost and time consuming re-design to finally meet all requirements and restrictions.

(a) Traditional Planning Process (b) Improved Planning Process

Fig. 1. Illustration of the iterative building construction planning process. The rel-evance of energy and construction cost considerations typically doesnrsquo;t grow before the later phases, thus increasing the risk of requirements for re-design and additional planning phases if certain requirements cannot be fulfilled (a). Utilizing automated simulation and modeling, the energy and cost aspects can be considered from the very first planning steps (b).

Utilizing BauOptimizer software, the risk for requiring a re-design can be sig-nificantly reduced, as the entire model with all aspects can be evaluated from the very first planning actions until the final construction, see Fig. 1(b). The multi-criterion optimization of the design requires a balanced linkage of the di erent, partially oppositional aspects of building construction to serve as common basis of quantitative comparison. Linking together construction costs and expected en-ergy costs over a certain period of time allows the establishment of an e ciency term, which facilitates balancing the two key goals of building construction plan-ning. Increased investments into energy saving strategies can redeem within a

Quantitative Assessment and Optimization in Building Design

41

period of amortization. Consequently investment costs can be o set against a reduction in energy demand. It has to be explicitly stated that the co

全文共43972字,剩余内容已隐藏,支付完成后下载完整资料


建筑规划中自动定量评估和优化能源与成本效率的规范化参考系统研究

摘要:在可预见的未来,化石资源的短缺和建筑工程在市场竞争力方面的节约是生态和经济共同刺激下形成的必然结果,所以需要经过深思熟虑来优化项目架构和选择最佳材料,以最大限度地在成本与能源优化之间进行权衡。BauOptimizer施工规划应用可以对能源和成本效率从第一个规划迭代到最终设计,从而进行监测和优化。该应用将模拟的建筑施工成本和未来几十年的能源成本预测联系在一起,建立对施工规划效率的定量评估,并进一步通过改变墙体、窗户和所有其他方式的构造类型来自动评估所有可能的规划变量。依据规划变量和法律规范的解决方案空间,与理论上最有效的设计进行对照,评估确定单一施工规划质量的施工现场特定规模。

关键词:建模与仿真;能源和成本效率;多标准优化;计算机应用设计

1引言

建筑规划必须在满足所涉及的利益相关者需求的多样化与其他各方面之间取得平衡。建筑师在想要用建筑设计表达自己的灵感和他所有的想法时,如防波堤和移动墙,一般不会考虑建筑成本,预期的能源需求和简单高效的建筑形状。相比之下,建筑业主希望通过尽可能地利用建筑施工的可用空间来实现最大化的净建筑面积。当今建筑要考虑的一个不可或缺的关键方面就是能源效率。尽管保温材料的投资较高,使建筑外壳的施工成本明显增加,但通常预计在未来几年内将实现摊销和还款,预期的供热需求可以快速的节约能源成本。此外,立法机构的规范和限制必须从第一个规划阶段考虑,以确定最终设计或者获得生态建筑的资助。为了实现均衡的建筑施工设计,所有这些方面都必须从早期的规划阶段考虑。传统的建筑规划过程如图1(a)所示,强调早期的艺术自由。建筑能源成本以及相关法律限制的重要性和相关性等关键方面在后期的规划阶段才逐渐体现。从开始就不考虑整个模型会增加重新设计的成本和耗时的风险,以最终满足所有要求和限制。

图1.迭代建筑施工规划过程的说明。能源和建筑成本考虑的相关性通常不会在后期阶段增长,从而如果不能满足某些要求,则会增加重新设计和附加规划阶段的需求风险,如图(a)。如果利用自动化仿真和建模,便可以从第一个规划步骤考虑能源和成本方面因素,如图(b)。

(a)传统规划过程

(b)改进规划过程

利用BauOptimizer软件,可以显着降低需要重新设计的风险,因为可以从最初的规划到最后的结构评估整个过程都有其各步骤的模型,参见图1(b)。设计的多标准优化需要建筑施工的不同对立方面的平衡联动,作为定量比较的共同基础。在一段时间内将施工成本和预期能耗成本联系起来,可以建立一个有效的术语,有利于平衡建筑施工规划的两个关键目标。增加对节能策略的投资可以在摊销期内赎回。因此,能源需求的减少可以抵消投资成本。必须明确地指出,绝缘层的成本因素在今天是非常重要的。因为像EPS这样的绝缘材料是由化石资源生产的,因此未来重要的、正确的材料选择也取决于能源成本指数。只是最大限度地提高能源效率并不考虑成本是不合理的。

开发的软件应用程序BauOptimizer只需要少量的规划迭代,并在整个规划周期保持规范限制就可以支持建筑师和建筑业主平衡能源需求和建筑成本。基于归一化参考系统,可以对单个规划变量进行定量比较,从而实现成本和能源效率的自动优化。

2建筑施工环境

建筑施工环境的准确建模是可靠的模拟和优化结果的先决条件。相关模型参数将在以下部分中列出。

2.1建筑工地

建筑工地尺寸由相对于当地具有法律约束力的土地使用规划和保持建筑物线路的所有这些方向的最大可构造长度、宽度和高度以及公差范围来定义,比如防波堤。

基于目标区域的太阳能增益和年度温度分布,建筑工地的气候特性对于精确计算具体能源需求非常重要。对于气候特征,需要相对于特定海平面的月平均温度和基于取向的太阳能增益作为模型参数。为了计算能量需求,日平均值的20开尔文值必须通过加热能量来补偿,以确保恒定的最小室温。

2.2建筑几何

建筑几何是通过在特定楼层高度为每层指定一个平面图来建模的。每个平面图被指定为一组任意定向的折线,全部在0.5m的网格上定义,见图2。通过折线部分指定的墙壁被正交定位成朝向基部。与下层和上层相比,地板的交叉点分别在一致形状的情况下定义了突出点、偏移量和中间上限。

这样可以实现对真实建筑几何的充分近似,同时对用户交互的最低要求也可以实现。根据建筑几何模型,与奥地利和德国能源证书使用的建筑形状较粗糙的近似值相比,可以更准确地计算供热能源需求。

图2.建筑物的几何形状是通过建模每层的平面图来确定的。具有相邻级别的不同类型的交叉区域是彩色编码的。主要投影视图(前,后,侧)方便规划员检查建筑物的设计理念。

2.3建筑施工材料

在每个建筑模型中,建筑材料必须分配给主要建筑部件、墙壁、地板和屋顶部分。这些主要构造部分根据其模态,即与空气,土壤或加热的毗邻建筑物相关的建筑物理学,如在模型中具有不同的热电阻率,而进行细分,详见Tab.1。四类空气、毗邻建筑加热或未加热和土壤适用于三个主要施工部分。

对于Windows,根据着色策略,还有其他模式类型,请参见Tab.2。阴影因素具有很高的相关性,可以显著降低太阳能增益的实现。窗口比率和模态可以指定为每个墙壁的可选属性。

总体而言,最多有18种不同的模式类别来指定一个单一的规划项目。对于每个模态类别,某种构造组装,例如 25厘米的砖石墙与12厘米EPS-F绝缘材料,必须被选为建筑模型的参数。每个结构由主要结构层(钢,砖石,混凝土)和可以相对于其厚度变化的绝缘层(EPS,矿棉)组成。此外,对于某种构造组装,可以存在保持恒定的附加层,参见示例Tab.3。

对于屋顶部分,将选择不同形状如单坡或平台屋顶作为模态子类别。建筑师或规划者可以根据具有建筑物理属性和成本参数的目录,选择每个模态的施工组装。总体而言,目前可用的建筑类型目录有200多个要素,并可以根据建筑行业的现状进行扩展。

表1.分别应用于从建筑物内部到施工部分以及从施工部分到外部环境的主要施工部件及其各自的电阻率Rsi和Rse的子集。模态相关校正因子F是处理具有较低热相关性的模态的权重。

part

modality

Rsi

Rse

F

wall

towards air

0.13

0.04

1.00

wall

adjoined heated

0.00

0.00

0.00

wall

adjoined unheated 0.13

0.13 0.70

ground adjoined unheated 0.17

0.17 0.60

ground towards soil

0.17

0.00

0.70

roof

towards air

0.10

0.04

1.00

roof

adjoined unheated 0.10

0.10 0.90

roof

under soil

0.17

0.00 0.70

表2.根据特定的着色策略对窗口模式进行区分

part

modality

shading f actor

window inside jalousie

0.88

window outside jalousie

0.24

window marquee

0.36

window roller shutter

0.19

window full shading

0.00

window without shading

0.99

表3.土壤上一层施工总施工厚度为0.634m,累积热阻0.17(Rsi Rse),施工总电阻为2.673(R[m2K/W ]),导致U- 值0.374 W/m2K.。对于这种构造概念,可变主要结构是层3,可变绝缘层是层1.在优化期间,其它组件保持固定。

layer material

d[m]

lambda;[W/mK]

1

foam glass granules

0.160

0.085

2

PAE insulation film

0.002

0.230

3

steel reinforced concrete plate 0.300

2.500

4

bituminous primer

0.000

5

optional ground sealing

0.005

6

polysterence concrete

0.060

7

subsonic noise insulation

0.020

0.040

8

PAE insulation film

0.002

0.230

9

screed

0.070

10

lining

0.015

3规划项目的效率

3.1效率指标的定义和计算

3.2自动化施工部件变体评估优化

3.3识别施工部件优化的潜力

3.4建筑几何优化

4规划项目具体规范化参考系

全文共6113字,剩余内容已隐藏,支付完成后下载完整资料


资料编号:[143324],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。