Analysis of multipurpose ship performance accounting for SME shipyard building limitations
Y. Denev amp; P. Georgiev
Technical University of Varna, Varna, Bulgaria
Y. Garbatov
Centre for Marine Technology and Ocean Engineering 1 CENTEC), Instituto Superior Teacute;cnica,Universidade de Lisboa, Lisbon, Portugal
ABSTRACT: This study analyses the performance of new design multipurpose ships, accounting for the constraints of a small and medium sized shipyard during the building process of new ships. The conceptual design of ships with deadweight in the range of 5,000 to 8,000 tons with and without ship-yard building constraints is performed. The ship hulls, for all studied ships, are developed based on the combined linear scale and Lacken by transformation approach using 3D models of existing already built ships. The evaluation of the performance includes the total resistance of ship at three different speeds,intact stability, cargo volume and number of containers on the deck. The impact of the shipyard building constraints is evaluated by comparing the performance index of studied ships with the same deadweight with and without shipbuilding restrictions. Based on the present analysis, several important conclusions are derived.
1 INTRODUCTION
Nowadays, the European maritime industry relies on small and medium-sized enterprises,SME to restore traditional European shipbuilding industry while ensuring the youth employment. According to the European Association of Craft, Small And Medium-sized Enterprises, (UEAPME, 2014),99.8% of the more than 20 million enterprises in the EU are SMEs. The average European enterprise provides a job for six employees, including the owner- manager, and SMEs count for 2/3 of the private employment and produces about 60% of the added value in the European economy. In the last decade, SMEs created 80% of the new jobs.
According to the EU Craft and SME Barometer, for the second half of2017, the SME Climate Index reached 80.2 ppts and it is the highest score ever achieved since the outbreak of the global financial crisis in 2007- -08.The SME Climate Index is calculated as the aver-age of the companies that have reported positive or stable business growth and expect a positive or stable development for the next period. Therefore,the index can vary from 100 (all positive or neutral)to 0 (all negative).
In this respect, the EU funded Project Shiplys main objectives are to respond to the needs of the SME shipyard designers, shipbuilders and
ship-owners (Bharadwaj et al., 2017) in the development of a ship risk-based design framework a framework tool will be developed to support the competitiveness of SMEs in design, shipbuilding and retrofitting.
The shipbuilding is strongly related to the transportation of cargoes. For the general/dry cargo shipping in the Black Sea and Mediterranean regions, the Istanbul Freight Index, ISTFIX provides information that can be used for any type of shipping analysis. ISTFIX is an internet reference website that contains statistical information derived from various sources.
The analysed routes, taken by the ships operation are:
- Route l: Black Sea - Marmara;
- Route 2: Black Sea - East Mediterranean;- Route 3: Black Sea - Central Mediterranean;- Route 4: Black Sea - West Mediterranean;- Route 5: Black Sea - Continent.
Four groups of ships are analysed:- Group 1: 2,000- 4,000 DWT;- Group 2: 4,000 -6,000 DWT;- Group 3: 6,000- -8,000 DWT; .- Group 4: 8,000- -12,000 DWT.
The ISTFIX provides a unique freight index in the short sea coaster shipping, starting from January lst, 2008. A study shows that the market risk in the ISTFIX shipping area is much lower than in the international Baltic handy size index,BHSI (Uuml;nal amp; Derindere, 2014).
The shipping in Route 1 to 5 are a part of the Short Sea Shipping that operates in the EU coast-line of about 70,000 km.
According to a recent study, the current short sea transportation capacity is inefficient, especially in the dry bulk and general cargo segments (Gus-tafsson et al., 2016).
This study highlighted five directions for improvement of the competitiveness:
- increase the freight market efficiency through transparency,
- dynamic and integrated production and logistics planning,
- efficient cargo handling,
- performance-driven shipbuilding and operation
- sustainable investment and governance models for the system-wide transition.
The goal of the present study is to analyse the importance of the SME shipyard building limitations on the performance of new design ships built in the conditions of SME shipyard. The study considers the shipbuilding capacity of an SME shipyard and the demand of the ship-owners for an efficient ship, operating in the Black sea -Mediterranean region. The building limitations considered in the present study are as follows(Atanasova et al., 2018):
- maximum docking capacity- 1,800 t;
- maximum dock dimensions that allow a ship to be built with a length not greater than 135.8 meters and a breadth not greater than 16 meters;
- the depth of the fairway determines the draft of the ship to be not more than 8 meters.
The software tool Expert' has been used in defining design solutions for multipurpose ships subjected to shipbuilding, operational and functional constraints (Damyanliev et al., 2017, Garbatov et al., 2017a). This software is structured as an open system allowing the search design solution by Sequential Unconstrained Minimization Technique (SUMT) for different types of ships for which a suitable mathematical model can be generated. Different mathematical models can be employed in identifying the main dimensions of ship, ship hull form, mass and volume distributions, ge
剩余内容已隐藏,支付完成后下载完整资料
分析中小企业船厂多用途船舶性能核算的局限性
Y. Denev amp; P. Georgiev
保加利亚瓦尔纳瓦尔纳技术大学
Y. Garbatov
海洋技术和海洋工程中心,葡萄牙里斯本里斯本大学高等技术研究所
摘要:本文分析了新设计的多用途船舶的性能,考虑了中小型船厂在新船舶建造过程中的约束条件。对载重量在5000 - 8000吨之间的船舶进行了有和无船厂约束的概念设计。所有研究船舶的船体都是基于线性尺度和Lacken的组合,利用现有已建船舶的三维模型,通过变换方法开发的。性能评估包括船舶在三种不同速度下的总阻力、完整稳定性、货运量和甲板上集装箱的数量。通过比较具有相同载重量且不受造船限制的船舶的性能指标,评价了造船约束的影响。在此基础上,得出了几点重要结论。
1介绍
如今,欧洲航运业依靠中小企业,中小企业在保证青年就业的同时,恢复了欧洲传统的造船业。根据欧洲工艺、中小企业协会(UEAPME, 2014)的数据,在欧盟2000多万家企业中,99.8%是中小企业。欧洲企业平均为6名员工提供一份工作,其中包括所有者-经理,而中小型企业占私人就业的2/3,为欧洲经济创造了约60%的附加价值。在过去十年中,中小企业创造了80%的新就业机会。
据欧盟工艺与中小企业晴雨表显示,2017年下半年,中小企业气候指数达到了80.2分,是2007- 08年全球金融危机爆发以来的最高水平。中小企业景气指数的计算方法,是计算已录得正面或稳定的业务增长,并预期下一段期间会有正面或稳定发展的公司的平均年龄。因此,索引可以从100(全部为正或中性)到0(全部为负)。
在这方面,欧盟资助的项目Shiplys的主要目标是响应中小企业造船厂设计师、造船厂和船东(Bharadwaj et al.,2017)在开发基于船舶风险的设计框架时,将开发一个框架工具,以支持中小企业在设计、造船和改装方面的竞争力。
造船与货物运输密切相关。对于黑海和地中海地区的一般/干货航运,伊斯坦布尔货运指数(Istanbul Freight Index)提供的信息可用于任何类型的航运分析。ISTFIX是一个互联网参考网站,包含来自各种来源的统计信息。
船舶营运所采取的分析路线如下:
- 路线l:黑海-马尔马拉;
- 路线2:黑海-东地中海;
- 路线3:黑海-中地中海;
- 路线 4:黑海-西地中海;
- 5号线:黑海-大陆。
分析了4组船舶:-第1组:2000 - 4000 DWT;-第2组:4000 - 6000 DWT;-第3组:6000 - 8000 DWT;-第四组:8,000- 12,000 DWT
从2008年1月1日开始,ISTFIX提供了一个独一无二的短期海上过山车运输的运费指数。一项研究表明,ISTFIX航运区域的市场风险远低于国际波罗的海便利尺寸指数BHSI (Unal amp; Derindere, 2014)。
航路1至5号的船舶是在欧盟海岸线上约7万公里的短途海运的一部分。
根据最近的一项研究,目前的短期海上运输能力是低效的,特别是在干散货和普通货物部分(Gus-tafsson et al., 2016)。
本研究提出了提升竞争力的五个方向:
-透过透明度提高货运市场效率,
-动态和综合的生产和物流规划,
-高效率的货物处理,
-以性能为导向的造船和作业,
-全系统过渡的可持续投资和管理模式。
本研究的目的是分析中小型造船厂建造限制对中小型造船厂条件下建造的新设计船舶性能的重要性。该研究考虑了中小型造船厂的造船能力和船东对在黑海-地中海地区作业的高效船舶的需求。本研究考虑的建筑限制如下(Atanasova et al.,2018):
- 最大进坞能力1,800吨;
- 容许建造长度不超过135.8米及宽度不超过16米的船舶的最大船坞尺寸;
- 航道的深度决定船的吃水不超过8米。
“软件工具专家”已被用于定义多用途船舶在造船、操作和功能约束下的设计解决方案(Damyanliev et al.,2017, Garbatov et al.,2017a)。该软件是一个开放的系统,允许通过连续无约束极小化技术(SUMT)对不同类型的船舶进行搜索设计,并为其生成合适的数学模型。可采用不同的数学模型来确定船舶的主要尺度、船体形态、质量和体积分布、总布置、船体结构和设备;推进复杂;干舷要求;稳定;透航;灵敏性等。概念框架能够考虑到一系列的约束。
表1.非限定船舶的主要船舶尺寸 |
||||
DWT |
5,000 |
6,000 |
7,000 |
8,000 |
Ship |
S1 |
S2 |
S3 |
S4 |
L,m |
86.79 |
93.21 |
96.71 |
99.98 |
B,m |
16.17 |
16.87 |
18.6 |
19.23 |
d,m |
7.18 |
7.33 |
7.98 |
8.53 |
D,m |
8.9 |
9.32 |
10.06 |
10.81 |
L/B |
5.37 |
5.52 |
5.2 |
5.2 |
B/d |
2.25 |
2.3 |
2.33 |
2.26 |
L/D |
9.76 |
10 |
9.61 |
9.25 |
Cb |
0.685 |
0.76 |
0,67 |
0.669 |
△,t |
7,068 |
7,981 |
9,853 |
11,241 |
表2.限制宽度B=16米的主船尺寸
DWT |
5,000 |
6,000 |
7,000 |
8,000 |
Ship |
S1R |
S2R |
S3R |
S4R |
L,m |
88.63 |
106.6 |
120.62 |
135.06 |
B,m |
16 |
16 |
16 |
16 |
d,m |
7.08 |
6.88 |
6.67 |
6.57 |
D,m |
8.81 |
8.93 |
9.03 |
9.17 |
L/B |
5.54 |
6.66 |
7.54 |
8.44 |
B/d |
2.26 |
2.33 |
2.4 |
2.44 |
L/D |
10.06 |
11.93 |
13.36 |
14.73 |
Cb |
0.69 |
0.721 |
0.772 |
0.812 |
△,t |
7,091 |
8,665 |
10,181 |
11,809 |
分析中小型船舶修理厂建造新船的能力(Atanasova, et al., 2018),作者考虑了两组由软件工具专家开发的5000 - 8000 DWT范围内的船舶。这项研究也使用了同样的船。以资本支出为优化指标,得到了船舶的主要尺寸。第一组是没有造船限制的船舶,第二组是与一个特定的SME船厂相关的16米限制宽度的船舶(Atanasova, et al., 2018)。
第二组船舶的长度增加以补偿受限制的宽度,同时吃水减小,这可以用达到所要求的船舶最小稳性标准的条件来解释。
2船体外形
2.1船体,形态转换
对船舶性能的评估是基于现有母船PSH的改造获得的船体形状。
图1.船舶典型剖面和横截面,
图2. 5000dwt船体限制宽度,PSH 1。
图3. 8000载重吨船体无限制,PSH 2。
船体变形采用线性尺度变换和拉肯比变换相结合的方法,分两步进行。第一步是对纵坐标、横坐标和纵坐标进行尺度变换,并将它们乘以一个因子。线性比例保持船体系数不变。
第二步实现Lackenby(1950)方法来估计期望的位移(块系数,C,)。参数变化的限制,这仍然导致体面的船体形式,取决于船体的形式。由于所有八艘船的C值范围很广,从0.67到0.812,从Freeships Plus软件的数据库中选取了两种不同的母船。第一个是5000吨级和6000吨级的船舶,第二个是其余船舶。图2和图3显示了PSH1和PSH2。
2.2船舶总布置
所分析的多用途船为船前楼和船尾楼,上层建筑在船尾楼,船头楼和船尾楼的长度分别为船垂线长度的7%和23%。
上层建筑的高度和双层底、双层边的宽度、腔室等尺寸是常数。船的侧视图和横截面如图1所示。这艘船只打算在甲板上装载集装箱,但货舱的宽度与5排集装箱一致。
3 船体
根据is规则,两组船的整体性能是通过3种不同速度下的总阻力、完整稳定性和货舱总容积(不包括舱口和甲板上的集装箱数量)来评估的。
3.1船舶阻力总电阻(RT, kN)由Holtrop amp; Mennen(1982)方法计算,其中仅考虑三种速度,即10.5 kn;12.5 kn和15.0 kn。相对总电阻定义为:
RRT= RT/(gamma;▽) (1)
R, T是相对总阻力,gamma;是海水的具体重量,10.055 kn / m、和▽沉浸体积立方米。总电阻如表3所示。
3.2完整稳性
完整稳性是根据完整稳性规范(MSC.267(85),2008)第2.2.2章A部分对夏季吃水0.6至1.05范围内的几种吃水计算出的与船舶深度有关的最大允许垂直重心KGmax来评估的。相对完整稳定性RIS定义为:
RIS = KGmax/D (2)
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[236906],资料为PDF文档或Word文档,PDF文档可免费转换为Word
表3.船舶总阻力,kN。 |
||||
Speed, kn |
||||
Ship |
DWT |
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。
您可能感兴趣的文章
- 船舶在浅水航道中航行时的岸壁效应数值研究外文翻译资料
- 基于三维面元法限制水域船体下蹲的数值研究外文翻译资料
- 关于甲板大开口船体梁极限抗扭强度的实验研究外文翻译资料
- 基于斯托克斯方程计算和系统识别 方法预估实船操纵模型参数外文翻译资料
- 水面舰艇5415在PMM演习中的基准CFD验 证数据-第二部分:平均相位的立体PIV流 场测量外文翻译资料
- 初步设计阶段船舶功率推进预测第二部分初步设计中有用的服务速度船舶功率推进数学模型外文翻译资料
- 对某高速船模湍流自由表面的数值与试验研究外文翻译资料
- 第三章水下搜救与恢复操作外文翻译资料
- 液化天然气供求关系的现状与展望:一个全球性展望外文翻译资料
- 基于CFD的高层钢结构建筑风效应数值评估外文翻译资料