黄斑OCT图像的视网膜层使用边界分类外文翻译资料

 2022-08-26 16:33:04

英语原文共 20 页,剩余内容已隐藏,支付完成后下载完整资料


黄斑OCT图像的视网膜层使用边界分类

分割

Andrew Lang,1,*Aaron Carass,1Matthew Hauser,1Elias S. Sotirchos,2Peter A. Calabresi,2Howard S. Ying,3和Jerry L. Prince1

Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA

2Department of Neurology, The Johns Hopkins School of Medicine,

Baltimore, MD 21287, USA

3Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA

lowast;lang@jhu.edu

摘要:光学相干断层扫描(OCT)已被证明是眼科学必不可少的成像方式,并且在神经病学中被证明是非常重要的。OCT能够在视神经乳头和黄斑处视网膜进行高分辨率成像。黄斑视网膜层厚度提供了有用的诊断信息,并且已经显示与几种疾病中的疾病严重程度的测量很好地相关。由于这些层的手动分割是耗时的并且易于产生偏差,因此自动分割方法对于充分利用该技术是至关重要的。在这项工作中,我们建立了一个随机森林分类器,来分割由OCT所获得的黄斑立方体图像中的八个视网膜层。随机森林分类器学习各层之间的边界像素,为每个边界生成准确的概率图,然后对其进行处理以最终确定边界。使用该算法,我们可以精确地将黄斑立方体中包含的整个视网膜分割成九个边界,对于其中的任何一个至少精确度为4.3微米。对健康和多发性硬化患者进行了实验,两组之间的算法准确性没有差异。

copy;2013美国光学学会

OCIS代码:(100.0100)图像处理;(170.4470)眼科;(170.4500)光学相干断层扫描。

References and links

  1. J. G. Fujimoto, W. Drexler, J. S. Schuman, and C. K. Hitzenberger, “Optical coherence tomography (OCT) in ophthalmology: introduction,” Opt. Express 17, 3978–3979 (2009).
  2. P. Jindahra, T. R. Hedges, C. E. Mendoza-Santiesteban, and G. T. Plant, “Optical coherence tomography of the retina: applications in neurology,” Curr. Opin. Neurol. 23, 16–23 (2010).
  3. E. M. Frohman, J. G. Fujimoto, T. C. Frohman, P. A. Calabresi, G. Cutter, and L. J. Balcer, “Optical coherence tomography: a window into the mechanisms of multiple sclerosis,” Nat. Clin. Pract. Neurol. 4, 664–675 (2008).
  4. S. Saidha, S. B. Syc, M. A. Ibrahim, C. Eckstein, C. V. Warner, S. K. Farrell, J. D. Oakley, M. K. Durbin, S. A. Meyer, L. J. Balcer, E. M. Frohman, J. M. Rosenzweig, S. D. Newsome, J. N. Ratchford, Q. D. Nguyen, and

P. A. Calabresi, “Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography,” Brain 134, 518–533 (2011).

  1. S. Saidha, E. S. Sotirchos, M. A. Ibrahim, C. M. Crainiceanu, J. M. Gelfand, Y. J. Sepah, J. N. Ratchford, J. Oh,

M. A. Seigo, S. D. Newsome, L. J. Balcer, E. M. Frohman, A. J. Green, Q. D. Nguyen, and P. A. Calabresi,

“Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study,” Lancet Neurol. 11, 963–972 (2012).

  1. H. W. van Dijk, P. H. B. Kok, M. Garvin, M. Sonka, J. H. DeVries, R. P. J. Michels, M. E. J. van Velthoven,

R. O. Schlingemann, F. D. Verbraak, and M. D. Abra`moff, “Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy,” Invest. Ophthalmol. Visual Sci. 50, 3404–3409 (2009).

  1. S. Kirbas, K. Turkyilmaz, O. Anlar, A. Tufekci, and M. Durmus, “Retinal nerve fiber layer thickness in patients with Alzheimer disease,” J. Neuroophthalmol. 33, 58–61 (2013).
  2. M. E. Hajee, W. F. March, D. R. Lazzaro, A. H. Wolintz, E. M. Shrier, S. Glazman, and I. G. Bodis-Wollner, “Inner retinal layer thinning in Parkinson disease,” Arch. Ophthalmol. 127, 737–741 (2009).
  3. V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian,

L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmol- ogy 110, 177–189 (2003).

  1. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20, 900–916 (2001).
  2. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 46, 2012–2017 (2005).
  3. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomog- raphy images,” Opt. Express 17, 23719–23728 (2009).
  4. M. Garvin, M. Abramoff, X. Wu, S. Russell, T. Burns, and M. Sonka, “Automated 3-D intraretinal layer seg- mentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28, 1436–1447 (2009).
  5. Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza,

D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18, 21293–21307 (2010).

  1. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18, 19413–19428 (2010).
  2. I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in OCT images and quantitative evaluation of performances,” Pattern Recogn. 44, 1590–1603 (2011).
  3. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express 2, 1743–1756 (2011).
  4. B. J. Antony, M. D. Abra`moff, M. Sonka, Y. H. Kwon, and M. K. Garvin, “Incorporation of texture-based features in optimal graph-theoretic approach with application to the 3-D segmentation of intraretinal surfaces in SD-OCT volumes,” Proc. SPIE 8314, 83141G (2012).
  5. P. A. Dufour, L. Ceklic, H. Abdi

    剩余内容已隐藏,支付完成后下载完整资料


    资料编号:[439905],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。