The Application and Development of Photoelectric
Sensor
Zheng Chunjiao
Electrical Engineering Institute, Liaoning University of Technology,
Jinzhou, China 121001
zcj5894@yahoo.com.cn
Abstract: At present, the application of photoelectric sensors are more and more extensive, it also promotes the development of photoelectric sensors. Photoelectric sensor has simple structure and diversity. It has high precision, fast response, non-contact and other advantages. In this paper, we analyze the principle of photoelectric sensors, introduce the classification of photoelectric, and then highlight introduce the application of photoelectric sensors and the use of the principle of photoelectric sensors, analyze the current and future development of photoelectric sensors.
Keywords: Photoelectric sensor, the application of photoelectric sensor, the development of photoelectric sensor.
1 Introduction
Photoelectric sensor is the sensor to use the electronic and optical element as the detection component. Photoelectric detection has high precision, fast response, noncontact advantages and so on. The sensor has simple structure, flexible and diverse forms. Therefore, the photoelectric sensor is widely used in the field of control and testing. It can be used to detect the non-electricity which can cause changes in the amount of light, such as light intensity, radiation temperature, gas composition. It can also use light transmission, occlusion, reflection, interference and others to measure a variety of physical quantities, such as object size, displacement, velocity, temperature, etc. So it is an important and sensitive device which has a very wide application. When using the photoelectric sensor, it doesnt directly contact with the measured object and the beam quality is nearly zero, there is no friction in the measurement and almost no pressure on the measured object. Therefore, photoelectric sensors has obvious advantages than other sensors in many applications. However, its drawback is that optical devices and electronic devices are more expensive in some applications, and environmental conditions require higher on the measurement. In recent years, new optoelectronic devices are been emerging, particularly the birth of CCD image sensor, that creates a new field for the further application of photoelectric sensors.
2 The Principle of Photoelectric Sensor
Photoelectric sensors use photoelectric elements as sensor conversion devices. The principle of photoelectric sensor is to reflect the measured objects changes by light signal, and then convert the light signal into electrical signals by optoelectronic components. Usually the photoelectric sensor is composed by light source, optical access and optical components. The working process of photoelectric sensor is shown in Figure 1.
Fig. 1. The working process of photoelectric sensor
The role of optoelectronic devices is to convert the optical signal into electrical signal, which is based on the photoelectric effect. Photoelectric effect is a physical phenomenon that the light shines on certain substances and causes the material to change in the electrical characteristics. It can be divided into external and internal photoelectric effect.
External photoelectric effect is the physical phenomena that the objects electron escape surface of the object and emits outside under the influence of light. Photon is in the form of quantum 'particles' to describe visible light waves. Photon energy is hv, h is the Planck constant, v is the optical frequency. Photon flux corresponds to light intensity. External photoelectric effect is described by the Einstein equation:
hv=1/2*mv0^2
Where m is electron quality, v0 is electronic escape velocity. When the photon energy is equal to or greater than the work function, the external photoelectric effect can be generated. So each object has a corresponding effect on the photoelectric threshold frequency of light, known as the red limit of frequency. For more than the red limit of the incident light frequency, exogenous photocurrent is proportional to light intensity.
When light shines on the object, it can cause the resistivity to change or generate photo-emf which is called the internal photoelectric effect. The internal photoelectric effect is divided into photovoltaic effect and photoconductivity effect. Photovoltaic effect is the phenomenon that makes objects have a certain direction of the force under the influence of light. Optoelectronic devices based on the effects are photosensitive diodes, transistors, photovoltaic cells; photoconductive effect is that under the influence of light, electrons absorb the photon energy from the bonding state of transition to a free state, which leads to material changes in conductivity. Optoelectronic devices based on this effects are photosensitive resistor and so on.
3 The Classification of Photoelectric Sensor
Photoelectric sensor classification is varied. Photoelectric sensing devices based on external photoelectric effect are photoelectric tubes and photomultiplier tubes. Photoelectric sensors based on photoconductive effects are photoresistors. Photoelectric sensors based on barrier effects are based on photodiodes and phototransistors. Photoelectric sensors based on reverse side of the photoelectric effect are reverse photodiodes. Photoelectric sensors can be classified into analog optical sensors and digital optical sensors by signal forms. Photoelectric sensors also include fiber optic sensors, solid image sensors and so on. Figure 2 shows common photoelectric sensors.
Fig. 2. Common photoelectric sensors
4 The Application of Photoelectric Sensor
With the deve
剩余内容已隐藏,支付完成后下载完整资料
光电式传感器的应用与发展
摘 要 目前,光电传感器的应用越来越广泛,也极大地促进了光电传感器的发展。光电传感器结构简单,具有多样性。它具有精度高、响应快、非接触等优点。本文分析了光电传感器的原理,介绍了光电的分类,然后重点介绍了光电传感器的应用和光电传感器的原理,分析了光电传感器的现状和发展趋势。
关键词 光电式传感器,光电式传感器的应用,光电式传感器的发展
1引言
光电传感器是利用电子和光学元件作为检测元件的传感器。光电检测具有精度高、响应快、非接触等优点。该传感器结构简单,形式灵活多种多样。因此,光电传感器在控制和测试领域得到了广泛的应用。它可以用来检测能引起光量变化的非电量变化,如光照强度、辐射温度、气体成分。它还可以利用光的传输、遮挡、反射、干涉等来测量物体的大小、位移、速度、温度等各种物理量,是一种重要而灵敏的仪器,应用非常广泛。使用光电传感器时,它不与被测物体直接接触,光束质量接近零,测量时无摩擦,测量物体几乎没有压力。因此,光电传感器在许多方面比其他传感器具有明显的优势。然而,它的缺点是光学器件和电子器件在某些应用中价格昂贵,环境条件对测量要求较高。近年来,新型光电器件的出现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开辟了新的领域。
2光电传感器原理
光电传感器采用光电元件是作为传感器转换装置。光电传感器的原理是通过光信号来反映被测物体的变化,然后利用光电元件将光信号转换为电信号。光电传感器通常由光源、光路和光学元件组成。光电传感器的工作过程如图1所示。
图1 光电传感器的工作过程
光电器件的作用是将光电信号转换成光电效应的电信号。光电效应是一种物理现象,即光照射在某些物质上,使材料在电学特性上发生变化。可分为内光电效应和内光电效应。
外光电效应是物体在光的作用下物体的电子逸出表面向外发射的物理现象。光子是以量子“粒子”的形式来描述可见光波。光子能量是高压,h是普朗克常数,v是光的频率。光子通量对应光强。外部光电效应用爱因斯坦方程描述:
hv=1/2*mv0^2
其中m是电子质量,是电子的逃逸速度v0。当光子能量大于等于功函数时,可以产生外部光电效应。所以每个物体对光的光电阈值、频率都有相应的影响,即频率的红色极限。对于入射光频率超过红色极限的情况,外源光电流与光强成正比。
当光照在物体上时,它会引起电阻率改变或产生光电动势,这就是所谓的内部光电效应。内部光电效应分为光电效应和光电导效应。光伏效应是在光的作用下使物体具有一定方向力的现象。光电器件基于效应是光敏二极管、晶体管、光伏电池;光电导效应是在光的影响下,电子吸收光子能量从键合态过渡到自由态,从而导致材料导电性的变化。基于这种效应的光电器件是光敏电阻等。
3光电传感器的分类
光电传感器的分类是多种多样的。基于外光电效应的光电传感装置是光电管和光电倍增管;基于光电效应的光电传感器光敏电阻;基于障碍影响光电传感器是基于光电二极管和光电晶体管。光电传感器的背面是基于光电效应的反向光电二极管。光电传感器可按信号形式分为模拟光传感器和数字光学传感器。光电传感器还包括光纤传感器、固体图像传感器等。图2显示普通光电传感器。
图2 常见的光电传感器
4光电传感器的应用
随着科技的发展,光电传感器的使用越来越多。光电传感器在日常生活、工业生产和信息技术中有着越来越多的应用。
4.1光源是被测物体的应用
光照度单位是勒克斯(Lux),它是测光中常用的单位之一,是指被照明的物体的曝光程度,它可以用来测量照度计。
1)红外辐射温度计
红外辐射测温仪在非接触测温中有着广泛的应用。红外辐射温度计既可用于高温测量,也可用于冰点以下的温度测量,这也是辐射温度计的发展趋势。商用红外测温仪的温度范围在30~3000度之间,中间分为不同的规格,可以根据需要选择合适的型号。图3显示红外辐射温度计的形状。
2)热释电传感器
热释电红外传感器能探测人或动物发射的红外光,并输出相应的电信号。热释电红外探测器件已广泛应用于红外光谱、红外遥感和辐射探测器等领域。
图3 红外辐射温度计的形状
它也被用于人体检测,报警,能产生远红外辐射,如安全门,酒店大堂自动门,自动灯光控制。例如:当房间里没有人时,它会自动关闭空调、饮水机;电视可以判断无人观看或无人睡觉,自动关闭电路。图4是热释电传感器的形状。
图4 热释电传感器的形状
4.2被测物体吸收光能的应用
在这种应用中,被测物体可以根据光能的衰减程度吸收光能,达到目标分析物的测量。
- 光电浊度仪
光电浊度仪是基于传输的衰减和散射红外光衰减与悬浮泥沙浓度来实现污泥的浓度和悬浮固体的测量原理。不同类型的污泥和悬浮物对红外光有不同的衰减,我们可以调整传输频率,并使用不同的算法来满足不同的应用。
2)烟雾报警器
没有烟雾,光敏元件接收恒定的红外LED发射器。万一发生火灾,烟雾进入房间,并阻止一些红外光,光敏三极管输出信号减弱,这是判断的阈值电路、报警信号发生。图5是烟雾报警器。
图5 烟雾报警器
4.3被测物体反射通量的应用
该传感器采用漫反射原理。在这种传感器中,发射器和接收器安装在同一设备上。发射器发射的光被目标物体反射,反射光在各个方向,反射光的一部分反射到接收器中,从而能够探测到目标物体。
1)反射式烟雾报警器
在吸烟的情况下,由于红外管垂直于室内黑色的烟雾吸收材料,所以红外LED的红外光线不能达到红外光敏三极管。当烟雾进入烟室、烟的固体颗粒产生漫反射的红外光,使红外光源部分到达光电晶体管和光电流输出。
2)光电转速表
光电转速表是一种反射式光电传感器,可与被测物体外数十毫米距离,无需接触即可测量速度。
3)颜色传感器
颜色传感器用于检测物体上的特定颜色或斑点,它通过与没有颜色的区域相比来测量颜色,而不是直接测量颜色。
4.4测量对象的应用阻止光
遮光光电传感器需要两个独立的外壳,发光装置安装在机箱内,接收器安装在另一个机箱中。发出的光从发射极注入到接收器,当目标对象块光接收机的输出将改变。
带钢跑偏光电检测仪。当这条错误的道路,边缘常与送机,造成浪费。当条处于正确位置(中心位置)时,放大器输出电压为零;当条带向左时,减小了遮光面积,输出电压反映了条带方向和尺寸的偏差。带钢跑偏光电检测仪如图6所示。
图6 带钢跑偏光电检测仪
5光电传感器的发展
随着60世纪半导体技术的发展,光敏半导体器件迅速发展,在这一时期,各种光学材料得到了充分的研究和广泛的应用。通过对光电效应原理和器件的研究,人们开发出了适用于不同场合的各种光电器件。随着薄膜技术、表面技术和大规模集成电路技术的发展,光电传感器的制造工艺也达到了很高的水平,大大降低了产品的成本。在过去的几十年里,红外传感器和其他光学传感设备在航空航天和国防领域获得了广泛的应用。未来几年,传感器的主要技术将是灵敏度、分辨率和整体性能的突破。光电传感器的应用范围已扩大到纺织、造纸、印刷、医疗、环保等领域。传统领域的研究有了新的发展,如红外探测、辐射测量、光纤通信、自动控制等。
红外传感器和微光传感器是目前应用最广泛的两种光电传感器。红外传感器的分辨率越来越高,降低了对冷却的要求,提高了可靠性。微光传感器依赖于传统图像增强器的改进,传感器的模拟信号转换为数字信号。这两种技术的发展趋势是集成了多种多光谱传感器技术,可以最大限度地发挥单个技术的性能,越来越多地应用于手持设备和无人飞行器等领域。
组合几种不同的光电传感器的优点有很多优点,但只有在合适的论坛上才能发挥这些优势。例如,微光传感器更适合于在夜间观察广阔的区域,但不足以探测隐藏在树林中的静态的人。在这种情况下,如果我们把长波红外摄像机和微光传感器融合在一起,树木后面的人就会被看见。如果我们融合另一个短波红外传感器,我们甚至可以识别出人的面部特征。
此外,光电传感器的另一大趋势是增加像素焦平面阵列的数目。
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[22745],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。