五菱汽车后制动器设计外文翻译资料

 2022-09-06 14:51:29

THE BRAKE BIBLE

Brakes - what do they do?

The simple answer: they slow you down.
The complex answer: brakes are designed to slow down your vehicle but probably not by the means that you think. The common misconception is that brakes squeeze against a drum or disc, and the pressure of the squeezing action is what slows you down. This in fact is only part of the equation. Brakes are essentially a mechanism to change energy types. When youre travelling at speed, your vehicle has kineticenergy. When you apply the brakes, the pads or shoes that press against the brake drum or rotor convert that energy into thermal energy via friction. The cooling of the brakes dissipates the heat and the vehicle slows down. Its the First Law of Thermodynamics, sometimes known as the law of conservation of energy. This states that energy cannot be created nor destroyed, it can only be converted from one form to another. In the case of brakes, it is converted from kinetic energy to thermal energy.
Angular force. Because of the configuration of the brake pads and rotor in a disc brake, thelocation of the point of contact where the friction is generated also provides a mechanical moment to resist the turning motion of the rotor.

Thermodynamics, brake fade and drilled rotors.

If you ride a motorbike or drive a race car, youre probably familiar with the termbrake fade, used to describe what happens to brakes when they get too hot. A good example is coming down a mountain pass using your brakes rather than your engine to slow you down. As you start to come down the pass, the brakes on your vehicle heat up, slowing you down. But if you keep using them, the rotors or drums stay hot and get no chance to cool off. At some point they cant absorb any more heat so the brake pads heat up instead. In every brake pad there is the friction material that is held together with some sort of resin and once this starts to get too hot, the resin starts to vapourise, forming a gas. Because the gas cant stay between the pad and the rotor, it forms a thin layer between the two whilst trying to escape. The pads lose contact with the rotor, reducing the amount of friction and voila. Complete brake fade.
The typical remedy for this would be to get the vehicle to a stop and wait for a few minutes. As the brake components cool down, their ability to absorb heat returns and the next time you use the brakes, they seem to work just fine. This type of brake fade was more common in older vehicles. Newer vehicles tend to have less outgassing from the brake pad compounds but they still suffer brake fade. So why? Its still to do with the pads getting too hot. With newer brake pad compounds, the pads transfer heat into the calipers once the rotors are too hot, and the brake fluid starts to boil forming bubbles in it. Because air is compressible (brake fluid isnt) when you step on the brakes, the air bubbles compress instead of the fluid transferring the motion to the brake calipers. Voila. Modern brake fade.

So how do the engineers design brakes to reduce or eliminate brake fade? For older vehicles, you give that vapourised gas somewhere to go. For newer vehicles, you find some way to cool the rotors off more effectively. Either way you end up with cross-drilled or grooved brake rotors. While grooving the surface may reduce the specific heat capacity of the rotor, its effect is negligible in the grand scheme of things. However, under heavy braking once everything is hot and the resin is vapourising, the grooves give the gas somewhere to go, so the pad can continue to contact the rotor, allowing you to stop.

The whole understanding of the conversion of energy is critical in understanding how and why brakes do what they do, and why they are designed the way they are. If youve ever watched Formula 1 racing, youll see the front wheels have huge scoops inside the wheel pointing to the front (see the picture above). This is to duct air to the brake components to help them cool off because in F1 racing, the brakes are used viciously every few seconds and spend a lot of their time trying to stay hot. Without some form of cooling assistance, the brakes would be fine for the first few corners but then would fade and become near useless by half way around the track.

Rotor technology.
If a brake rotor was a single cast chunk of steel, it would have terrible heat dissipation properties and leave nowhere for the vapourised gas to go. Because of this, brake rotors are typically modified with all manner of extra design features to help them cool down as quickly as possible as well as dissapate any gas from between the pads and rotors. The diagram here shows some examples of rotor types with the various modification that can be done to them to help them create more friction, disperse more heat more quickly, and ventilate gas. From left to right.

1: Basic brake rotor. 2: Grooved rotor - the grooves give more bite and thus more friction as they pass between the brake pads They also allow gas to vent from between the pads and the rotor. 3: Grooved, drilled rotor - the drilled holes again give more bite, but also allow air currents (eddies) to blow through the brake disc to assist cooling and ventilating gas. 4: Dual ventilated rotors - same as before but now with two rotors instead of one, and with vanes in between them to generate a vortex which will cool the rotors even further whilst trying to actually suck any gas away from the pads.
An important note about drilled rotors:Drilled rotors are typically only found (and to be used on) race cars. The drilling weakens the rotors and typically results in microfractures to the rotor. On race cars this isnt a problem - the brakes are changed after each race or wee

剩余内容已隐藏,支付完成后下载完整资料


制动器

制动器:它们的作用?

简单的说:它会使你的汽车慢下来。

复杂的说:制动器被用来让你的车减速,但可能不是你所想的意思。普遍的误解是,制动器挤压制动鼓或制动片,挤压的压力的作用使你的车慢下来。但这只是制动的一部分。制动系统本质上是改变能量的类型。当你在全速行驶时,你的汽车获得动能。这是热力学第一定律,有时被视为能量守恒定律。也是就说:能量不能被创造也不能被消灭,只能由一种形式转换成另一种。制动情况下,它是动能转化为热能。

角向力。 因为在盘式制动器的刹车片和转子的位置,摩擦产生的接触点的位置也产生了一个机械的抵御转子的回转运动。

The cooling of the brakes dissipates the heat and the vehicle slows down热力学,制动失效,钻孔转子。
如果你骑摩托车或驾驶一辆赛车,你或许熟悉制动失效,描述当制动器太热,他发生了什么。一个很好的例子就是从山上下来使用刹车制动,而不是你的引擎使你减速。当汽车开始滑动下来时,刹车使汽车产生热能,使你减速。但是如果你持续使用他们, 转子或鼓留热并没有机会冷却。从某种意义上说他们不能吸收更多的热量,使刹车垫热了起来。在每一个垫子的摩擦材料有某种共同的树脂一旦开始变得太热,该树脂开始蒸发,形成气。由于气体之间不能待在垫层及转子,而是形成薄薄的一层在两个之间准备排走。垫失去与转子的接触,减少摩擦和热量。这是完全的制动失效。
典型的补救办法,将车停了下来,等待几分钟。由于制动部件降温,吸收热量的原因,下一次您使用刹车的能力,似乎会好一点。这种类型的制动失效在旧车辆更常见。新的车辆往往从刹车垫中减少排气,但他们仍有制动失效。为什么呢?它仍然因为刹车垫太热。犹由于新的刹车垫合成,衬垫的热传递到卡钳一旦转子太热了,制动液开始沸腾冒泡。因为空气是可压缩的(制动液不是)当你踩刹车,气泡的压缩代替了流体转移到制动卡钳。这就是现代制动失效。
工程师们是怎样设计减少或消除刹车制动失效的? 年长的车辆,是使气化的气体有地方排掉。新的车辆,找到一些方式来冷却转子更为有效。无论如何你最终获得交叉钻孔或沟槽刹车盘。当槽表面是可以减少比热容量的转子,其效果可以忽略不计的。然而当大力刹车时一旦一切都是热和树脂材料蒸发,槽让气体排去, 所以垫可以继续接触转子,让车减速停下来。
整个的理解能量转换的关键是,刹车他们该做什么,以及为什么它们设计成这样。如果你曾看过一级方程式赛车,你就可以看到向前的前轮里面有很大的洞(如上图所示)。这是管道空气刹车部件,以帮助他们冷却下来,因为在F1赛车中,刹车每隔几秒钟频繁使用,花很多时间预留热量。如果没有某种冷却协助,刹车就可能在最开始的几个转角失灵,最后刹车失效赛车在一半路程出局。

转子技术。
如果制动转子是一个单一的钢铁铸块,这将有严重的散热性能和气化气无法排去。因此,刹车盘通常使用各种额外的设计特点的方式来改进帮助他们冷却下来,尽快使垫和转子之间的任何气体排走。 The diagram here shows some examples of rotor types with the various modification that can be done to them to help them create more friction, disperse more heat more quickly, and ventilate gas.这里的图表显示了转子类型的各种修改,可以改进帮助他们创造更多的摩擦力,更迅速地驱散更多的热量,通风气体的一些例子。 From left to right.从左至右。

1:基本制动转子。2:沟槽转子-沟槽给予更多口,他们之间产生更多的摩擦,还允许气体从垫和转子之间的排走。3:沟槽钻孔转子-再给多一点口,但也让气流(涡旋)通过制动盘协助冷却和通风。4:双通风转子-以前一样,然而现在有了两个转子而不是一个,和他们之间叶片产生涡流将进一步冷却转子同时试图实际上从衬垫中排掉任何气体。

重要的一点:钻孔转子通常只使用于赛车。钻孔使得转子变弱,通常会导致转子产生各类裂缝。在赛车中这不是一个问题——在每场比赛或者每周都会更换刹车盘。但在路上的车,最终会导致刹车转子失灵的,不是你能想象的。我只提这件事,因为有许多供应商将为您提供钻孔转子,没有直接提到这个事实。

大转子。

这是如何适用于更大的刹车转子-一种普遍的跑车升级?汽车和自行车运动比赛通常有比一般的家庭汽车更大的盘或转子。一个更大的转子有更多的材料在里面,因此它可以吸收更多的热量。更多的物质也意味着更大的表面积,垫片产生摩擦,和更好的散热。较大的角度也将转子接触垫进一步远离轴旋转。这提供了一个更大的机械优势抵抗旋转的转子本身。这个工作最好的说明,设想一种纺纱钢轴上的阀瓣在你的面前。如果你夹紧你的大拇指任何一方的阀瓣靠近中间,你的大拇指将热得非常快,你会需要推动相当大的摩擦力使阀瓣慢下来。现在想象做同样的事情,但是你的大拇指夹在一起接近外缘的阀瓣。阀瓣将停止旋转得特别快,你的大拇指也不会很热。简单地说解释整个原理就是更大转子=更好的制动原则。

不同类型的制动器。

所有制动器都产生摩擦力。摩擦力是热的一部分动能转换过程。他们是如何不同的设计产生了摩擦的。

自行车车轮制动器

我想我覆盖这些,因为它们是最基本类型的制动方式,你可以看到,看工作了解。设计非常简单,在外部。一双橡胶块连接到一双卡钳,能在机架上旋转。When you pull the brake cable, the pads are pressed against the side or inner edge of the bicycle wheel rim.当你拉刹车线,刹车垫压向一侧或自行车轮辋的内侧边缘。 The rubber creates friction, which creates heat, which is the transfer of kinetic energy that slows you down.橡胶产生摩擦,产生热量,这是动能转移使车慢下来。 自行车制动实际上Theres only really two types of bicycle brake - those on which each brake shoe shares the same pivot point, and those with two pivot points.只有两个类型 - 自行车刹车制动蹄上有相同的摩擦点,并有两个摩擦点。 If you can look at a bicycle brake and not understand whats going on, the rest of this page is going to cause you a bit of a headache.如果你可以看了自行车制动,不明白发生了什么事情,本页面的其余部分你理解起来有麻烦了。

鼓式制动器-单前沿

下一个,更加复杂的类型的制动是鼓式制动器。这是简单的概念。两个半圆形的刹车片装在里面连接一个旋转的车轮的鼓。当你踩下刹车,刹车片向外扩大挤压内侧的鼓。这造成了摩擦,产生热量,转移动能,这将使车减速。下面的例子显示了一个简单的模型。制动器在这种情况下是蓝色椭圆形的对象。因为这是扭曲的,它的力使刹车片迫使他们向外扩张。当松开刹车,The return spring is what pulls the shoes back away from the surface of the brake drum when the brakes are released.回位弹簧从制动鼓的表面拉回刹车片。看到章节后面更多信息。

'单前沿'是指实际接触的旋转鼓轮制动蹄部件的数量。因为制动蹄片在一端,简单的几何意味着整个刹车片无法都接触到制动鼓。单前沿就是部分刹车片的术语,那些接触制动鼓,在单一制动情况下的方法,在最接近制动器的衬垫。此图 (右侧) 显示当刹车时,会发生什么情况。这刹车片向外压和制动衬垫的最初接触制动鼓的部分刹车片就是前沿。制动鼓旋转实际上有助于制动片向外加压,因为刹车片向口子的摩擦力。后沿的制动蹄片与制动鼓几乎没有接触。这个简单的几何解释了,为什么汽车是很难停止向后滚动,如果它只配单前缘沿鼓式制动器。由于制动鼓向后旋转,前沿的刹车片成为了后沿,因为制动不会咬合。

鼓刹车-双前沿

可以通过添加回位弹簧和旋转第二个制动器中心点来消除鼓式制动器的单个前沿的缺点。踩下刹车时,刹车片在两个点向外压。所以每个刹车片现在有一个前沿的和一个后沿。因为有两个刹车蹄,那里有两个刹车片,这意味着有两个边沿。因此名称双前沿。

盘式制动器一些背景。

盘式制动器在 1902 年被发明,伯明翰汽车制造商检基威廉 · 兰彻斯特的专利。他原先的设计了两个光盘,紧贴彼此产生摩擦来使车减速。直到 1949 盘式制动器的量产车上使用。在美国汽车创始人克罗斯利发明了我们目前熟知和喜爱的快车,就是使用了很多类似的盘动制动器和卡钳。他原先的设计虽然有点缺陷-制动器持续不到一年。终于在 1954 年雪铁龙推出先进的DS,成就了像自流平悬浮、 半自动变速箱、 活动前灯和复合车身盘式制动器的第一次现代化身。(所有事情,在 90 年代的汽车制造商都重新作为'新型')。

盘式制动器比鼓式制动器好了一个数量级来使车辆制动,这就是为什么你会发现的现代几乎所以汽车和摩托车都使用的是盘式制动器。运动型车辆具有更高的速度需要更好的制动减速,所以您会明白盘式制动器在这些车上的使用。

接下来,让我们讨论一下什么是汽车制动系统。

制动系统是汽车中最重要的系统。 如果制动失灵,结果可能是损失惨重的。制动器实际就是能量转换装置,它将汽车的动能(动量)转化成热能(热量)。当驾驶员踩下制动踏板,所产生的制动力是汽车运动时动力的10倍。制动系统能对四个刹车系统中的每个施加数千磅的力。

每辆汽车上使用两个完全独立的制动系统,即行车制动器和驻车制动器。

行车制动器起到减速、停车、或保持车辆正常行驶。制动器是由司机用脚踩、松制动器踏板来控制的。驻车制动器的主要作用就是当车内无人的时候,汽车能够保持静止。当独立的驻车制动器—踏板或手杆,被安装时,驻车制动器就会被机械地操作。

制动系统是由下列基本的成分组成:位于发动机罩下方,而且直接地被连接到制动踏板的“制动主缸”把驾驶员脚的机械力转变为液压力。钢制的“制动管路”和有柔性的“制动软管”把制动主缸连接到每个轮子的“制动轮缸”上。 制动液, 特别地设计为的是工作在极端的情况,填充在系统中。“制动盘”和“衬块”是被制动轮缸推动接触“圆盘”和“回转体”如此引起缓慢的拖拉运动, (希望)使汽车减慢速度。

典型的制动系统布置有前后盘式,前盘后鼓式,各个车轮上的制动器通过一套管路系统连接到制动主缸上。

基本上讲,所有的汽车制动器都是摩擦制动器。当司机刹车时,控制装置会迫使制动蹄,或制动衬片与车轮处的旋转的制动鼓或制动盘接触。接触后产生的摩擦使车轮转动减慢或停止,这就是汽车的制动。

在最基本的制动系统中,有一个制动主缸,这个主缸内部填充制动液,并包含两个部分,每个部分里都有一个活塞,两个活塞都连接驾驶室里的制动踏板。当制动踏板被踩下时,制动液会从制动主缸流入轮缸。在轮缸中,制动液推动制动蹄或制动衬片与旋转的制动鼓或制动盘接触。静止的制动蹄或制动衬片与旋转的制动鼓或制动盘之间产生摩擦力使汽车的运动逐渐减缓或停止。

制动液的装置位于主缸的顶部。目前大多数的车都有一个容易看见的装制动液的装置,为的是不用打开盖子就可以看得见制动液的油面。随着制动踏板的运动制动液就会缓慢的下降,正常情况下是这样的。如果制动液在很短的时间内下降得明显或者下降了三分之二,那么就要尽快的检查你的制动系统了。保持制动液装置充满制动液除非你需要维修它,制动液必须保持很高的沸点。位于在空气中的制动液就会吸收空气中的潮气引起制动液低于沸点。

制动液通过一系列的管路从主缸到达各车轮。橡胶软管只用在需要弹力的地方,比如应用在前轮。在车的行进中上下来回运动。系统的其它部分在所有的连接点上都应用了无腐蚀性的无缝钢管。如果钢线需要修理的话,最好的方法就是代替这条线。如果这不符合实际,那么为了制动系统可以用特殊的装置修理它。你不可以用铜管来修理制动系。它们是危险也是不正确的。

鼓式制动器包括制动鼓,一个轮缸,回拉弹簧,一个制动底版,两个带摩擦层的制动蹄。制动底版固定在轮轴外部的法兰或转向节。制动鼓固定在轮毂上。制动鼓的内部表面与制动蹄的内层之间有空隙。要使用制动器时,司机就要踩下踏板,这时轮缸扩大制动片,对其施加压力,是制动蹄触碰制动鼓。制动鼓与摩擦片之间产生的摩擦制动了车轮,从而使汽车停止。要释放制动器时,司机松开踏板,回拉弹簧拉回制动片,这样车轮会自由转动。

制动系统是由机械能,液压能或气压能装置驱动的。在机械杠杆适合所有的汽车的驻车制动器中使用。当踩下制动踏板时,杠杆就会推动制动器主缸的活塞给制动液施加压力,制动液通过油管流入轮缸。制动液的压力施加到轮缸活塞以使制动片被压到制动鼓或制动盘上。如果松开踏板,活塞回到原来的位置上,回拉弹簧拉回制动片,制动液返回制动主缸,这样制动停止。

驻动制动器的主要作用是车内无人时,使汽车静止不动。如果车内安装的是独立的驻车制动器,那么驻车制动器是由司机手动的控制。驻车制动器正常是当车已经停止时使用的。向后拉手闸,并把手柄卡在正确的位置上。现在,即使离开汽车也不用害怕它会自己滑走。如果司机要再次启车时,他必须在松开手杆之前按下按钮。在行车制动器失灵的情况下,手闸必须能停住车。正因为这样,手闸与脚闸分开,手闸使用的是绳索或杠杆而不是液力系统。

lt;

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[146771],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。