负载外文翻译资料

 2022-07-27 14:51:54
    1. LOADS
      1. Loads and load combinations are specified in Section 1. Loads due to temperature effects, erection stresses, and others based on the Contractor#39;s experience shall be included in the analysis if they cause significant stresses. If rational analysis indicates loads larger than specified, the larger loads shall be used.
      2. Minimum impact loads shall be 0.10 (TL) plus 0.25 (LS LLE), even if dynamic analysis indicates lower impact loads. If dynamic analysis indicates higher impact loads, then the higher loads shall be used.
      3. Load Conditions and Corresponding Allowable Stresses:
        1. Load combinations are specified in Section 1, Tables 1.1 and 1.2 'Load Combinations'. The allowable stresses are:

CONDITION

ALLOWABLE STRESS

Operating condition

Base stress

Overload condition

1.5 Base stress

Stowed condition

1.4 Base stress

        1. Base stress shall be 90% of allowable stress given in the AISC Specification except the basic allowable compressive stress for local buckling shall be as specified in this section. Basic allowable equivalent stress, defined below, at points subjected to combined shear and axial stresses shall be 1.25 times the basic allowable stress for pure tension. Basic allowable bearing stress for equalizer pins shall be 12.0 ksi. For other pins, basic allowable bearing stress shall be 0.4 times the yield stress for rotating pins and 0.8 times the yield stress for non-rotating pins.
        2. For trusses, except for load combinations which include fatigue conditions, when the calculated stresses include secondary effects caused by elastic deformation of the structure or joint rigidity, the sum of the terms in the interaction equation combining the bending and axial stresses may be 1.2 , instead of 1.0, provided the structure conforms to the allowable stress requirements when secondary effects are neglected. See BS2573 'Rules for the Design of Cranes, Part 1 : 1983' Paragraph '5.3 Secondary Stresses 'for a detailed method of applying this provision. The allowable stresses for bending and axial forces, however, shall be as stated in this specification.
        3. For fatigue analysis, secondary effects must be included and there shall be no increase in the allowable cumulative damage.
      1. Stability :
        1. Loads and load factors for which stability shall be calculated are specified in Section 1, Table 1.3 'Stability Combinations.' Angled wind effects shall be included in WLO and WLS.
      2. Wheel Loads:
        1. Loads and load factors for which wheel loads shall be calculated are specified in Section 1, Table 1.4 'Wheel Load Combinations.'
        2. The maximum wheel load for each combination shall be calculated with the trolley in the most severe position and the wind acting in the most severe horizontal direction.
      3. Combined Stresses:
        1. The equivalent stress, fe, for members subjected to combined shear and axial stress and/or bending stress at a point shall be taken as

,

where:

fx and fy are orthogonal axial stresses (tension is positive, compression is negative) and fxy is shear stress.

    1. MEMBERS SUBJECT TO BUCKLING
      1. The design of columns, beam columns, frames and beams subject to lateral buckling shall be in accordance with the AISC Specification. The design of flat plates, curved plates and plate stiffeners shall be in accordance with a recognized method that considers the combined effect of shear, compression and flexure. The effects of biaxial stresses shall be included. Criteria given in DIN, FEM, JIS or SSRC are acceptable. Since the different specifications use different loads, load combinations and allowable stresses, the applied loads and allowable stresses used to check local buckling shall conform to the requirements of the selected specification. If the SSRC is selected the loads and combinations shall be as specified in these specifications and the load factors, for local plate buckling, shall be in accordance with the FEM specification.
      2. The local buckling criteria given in the AISC and AISE standards are unacceptable because biaxial and combined stress effects are ignored. The choice of a practical method of calculation is left to the Contractor who shall state the origin of the method chosen.
      3. Tension field action may be included for evaluating pure shear resistance during overload and stowed conditions provided the tension field shear panels are designed for a factor of safety against collapse of at least 1.25. Tension field panels shall be assumed to have zero capacity to resist bending, bearing or axial stress.
    2. FATIGUE DESIGN CRITERIA
      1. Fatigue design shall generally conform to the requirements of BS5400: Part 10 except as modified in this section. Modifications to BS5400 pertain primarily to the deletion of provisions that apply to bridges only, insertion of design load spectra applicable to container cranes and the addition of tubular joints to the BS5400: Part 10 standard weld details.
      2. Cumulative damage shall be evaluated for the normal operating conditions detailed in this section. For the gantry frame and boom, only fluctuating stresses due to variations in the lifted load and the

        全文共31918字,剩余内容已隐藏,支付完成后下载完整资料


          1. 负载
            1. 载荷和载荷组合在第1节中规定。根据承包商的经验,由于温度影响、安装应力等造成的载荷如果造成显著应力,则这些应力应包括在分析中。 如果合理分析表明负载大于规定值,则应使用较大的负载。
            2. 即使动态分析显示较低的冲击载荷,最小冲击载荷应为0.10(TL)加0.25(LSLLE)。如果动态分析表明较高的冲击载荷,则应使用较高的载荷。
            3. 负载条件和相应的允许应力:
              1. 载荷组合在第1节,表1.1和1.2“载荷组合”中规定。 允许应力为:

        条件

        允许应力

        工作条件

        基本应力

        过载条件

        1.5 基本应力

        存放条件

        1.4 基本应力

              1. 基础应力应为AISC规范中给出的允许应力的90%,但局部屈曲的基本允许压应力应符合本节规定。在经受组合剪切和轴向应力的点处的基本可允许等效应力(定义如下)应为纯张力的基本允许应力的1.25倍。平衡销的基本允许轴承应力应为12.0 ksi(1KSI=1千磅力/平方英寸=6.895MPa)。对于其他销,基本允许轴承应力应为旋转销的屈服应力的0.4倍,非旋转销的屈服应力的0.8倍。
              2. 桁架,除了包括疲劳条件的载荷组合之外,当计算的应力包括由结构的弹性变形或接头刚度引起的次级效应时,组合弯曲应力和轴向应力的相互作用方程中的项的和可以是1.2,为1.0,前提是当忽略二次效应时,结构符合许用应力要求。有关适用本规定的详细方法,见BS2573“起重机设计规则,第1部分:1983”第5.3段次要应力。然而,弯曲和轴向力的许用应力应如本规范所述。
              3. 对于疲劳分析,必须包括次级效应,并且允许的累积损伤不应增加。
            1. 稳定性:
              1. 应计算稳定性的载荷和载荷系数在第1节,表1.3“稳定性组合”中规定。角度风效应应包括在WLO和WLS中。
            2. 车轮载荷:
              1. 应计算轮荷载的荷载和荷载系数在第1.4节“轮荷负荷组合”的第1节中规定。
              2. 每个组合的最大轮负荷应考虑在最不利位置的小车和最大水平方向的风。
            3. 组合应力:
              1. 对于在一点处受到组合剪切和轴向应力和/或弯曲应力的构件的等效应力,应当取为

        其中:

        fx和fy是正交轴向应力(拉力为正,压力为负),fxy为剪切应力。

          1. 受屈曲构件
            1. 受横向屈曲的柱,梁柱,框架和梁的设计应符合AISC规范。 平板,弯曲板和板加劲肋的设计应符合公认的考虑剪切,压缩和挠曲的综合效应的方法。 应考虑双轴应力的影响。 DIN,FEM,JIS或SSRC中给出的标准是可接受的。 由于不同规格使用不同的负载,负载的组合和许用应力,所施加的负载和用于校核局部屈曲许用应力应符合所选规范的要求。 如果选择SSRC,则负载和组合应符合本规范的规定,且局部板屈曲的负载系数应符合FEM规范。
            2. 在AISC和AISE标准中给出的局部屈曲标准是不可接受的,因为忽略了双轴和组合应力效应。实际计算方法的选择由承包商决定,承包商应说明所选方法的来源。
            3. 可以包括拉力场作用以用于在过载和收起条件期间评估纯抗剪切力,条件是拉力场剪切板设计用于至少1.25的崩溃的安全系数。拉力场应假定为具有零抗弯曲,轴承或轴向应力的能力。
          2. 疲劳设计标准
            1. 疲劳设计一般应符合BS5400:第10部分的要求,除非在本节中进行了修改。对BS5400的修改主要涉及删除适用于桥梁的规定,插入适用于集装箱起重机的设计载荷谱,以及向BS5400添加节点:第10部分标准焊缝细节。
            2. 累积损伤应在本节中详述的正常运行条件进行评估。对于龙门架和吊杆,只需考虑由于提升载荷和小车运动的变化引起的波动应力。静载荷,风载荷,机架行程和起重臂的升高和降低的影响可以忽略。
            3. 用于开发应力循环谱的载荷谱应如本节所述。指定的负载和周期表示实际预期操作条件的影响。应使用疲劳提升载荷(LLF),提升系统(LS)和吊运载荷(TL)来进行龙门架和吊杆的疲劳计算。
            4. 移动和循环定义如下:

        一个移动:从船上提起集装箱,移动小车将集装箱放在码头上;或反向操作。

        单周期:从船上提起集装箱,移动小车,通过集装箱起升机构将集装箱放置在码头上,收回起升吊具,返回船舶,将起升吊具设置在下一个集装箱上,并准备从船上提起集装箱;或上述的反向操作。
        每个循环有一个移动。

        双循环: 从船上提起集装箱,移动小车通过集装箱起升机构将集装箱放在码头上,从码头上取下集装箱,返回船舶,通过集装箱起升机构将集装箱放在船上,并准备从船上提起集装箱;或上述的反向操作。相同的集装箱可以同时提升和放置;小车不需要在提升和放置之间重新定位。每个双循环有两个移动。

            1. 每个周期的范围应如图所示。其余的图形和表格是为了清晰直观的介绍;每个介绍使用相同的载荷谱。

        图4.1:设计周期频谱

        时间

        ta 起升机构吊具放置在集装箱上; 应力只由小车产生

        ta到tb 起升机构吊具和集装箱提升; 应力是由小车、起升机构吊具、集装箱和起升冲击产生

        tb到tc 小车移动

        tc到td 起升机构吊具和集装箱下降放置; 应力只由小车产生

        td到te 起升机构吊具提升

        te到tf 小车返回

        tf到ta 起升机构吊具放置在集装箱上

        图4.2:典型的单周期应力谱

        时间

        ta 起升机构吊具放置在集装箱上; 应力只由小车产生

        ta 到tb 起升机构吊具和集装箱提升; 应力是由小车、起升机构吊具、集装箱和起升冲击产生

        tb到tc 小车移动

        tc到td 起升机构吊具和集装箱下降放置; 应力只由小车产生

        td到te 起升机构吊具和集装箱提升; 应力是由小车、起升机构吊具、集装箱和起升冲击产生

        te到tf 小车返回

        tf到ta 起升机构吊具和集装箱下降放置; 应力只由小车产生

        图4.3:典型的双周期应力谱

        联系详情

        详细类BS5400:第10部分



        m

        NFCM
        K1
        (ksi)m

        FCM
        K2
        (ksi)m

        W

        3.0

        7.46108

        4.88108

        G

        3.0

        1.15109

        7.62108

        F2

        3.0

        2.21109

        1.31109

        F

        3.0

        3.17109

        1.92109

        E

        3.0

        5.65109

        3.17109

        D

        3.0

        7.50109

        4.63109

        C

        3.5

        7.861010

        4.911010

        B

        4.0

        6.791011

        4.461011

        节点

        详细类AWSD1.1第10节



        m

        NFCM
        K1
        (ksi)m

        FCM
        K2
        (ksi)m

        T-A

        5.8

        2.221014

        7.401013

        T-B

        4.4

        4.041011

        1.351011

        T-C1

        4.1

        1.071011

        3.571010

        T-C2

        3.6

        9.27109

        3.0109

        T-D

        3.3

        2.35109

        7.83108

        T-E

        3.2

        9.87108

        3.29108

        T-F

        4.6

        4.741010

        1.581010

        T-DT

        4.4

        4.39109

        1.46109

        T-ET

        3.4

        8.62107

        2.87107

        T-FT

        4.2

        1.09109

        3.63108

        T-K1

        4.5

        6.38107

        2.13107

        T-K2

        4.3

        2.35107

        7.38106

        NFCM是非临界断裂部分
        FCM是临界断裂部分
        T前言用于区分AWS D1.1节点类和BS5400类。

        表4.1:允许累积损伤

            1. 应找到小车所在关键位置的每个临界点的应力。波动应力和每个波动的周期数应由应力谱确定。应力循环值和计数应通过“储层法”进行。参见本节所示中BS5400:Par

              全文共9930字,剩余内容已隐藏,支付完成后下载完整资料


              资料编号:[144220],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。