多轴数控机床对正齿轮蜗杆磨削的几何误差补偿外文翻译资料

 2023-04-02 16:16:17

英语原文共 21 页,剩余内容已隐藏,支付完成后下载完整资料


多轴数控机床对正齿轮蜗杆磨削的几何误差补偿

摘要

作为主要误差来源之一,几何误差对正齿轮的精确蜗杆研磨工作进行了补偿。以往的几何误差补偿方法通常应用于旋转刀具的加工,其中由于刀具旋转角度的误差不影响加工结果,因此不予补偿。这些方法不适用于平面齿轮的蜗轮研磨,因为蜗轮是非旋转刀具,加工结果对刀具旋转角的误差很敏感。本文提出了一种基于非旋转刀具加工的几何误差补偿方法。首先,考虑刀具旋转角度对几何误差的建模和补偿。其次,选择根据平面齿轮蜗轮研磨的产生过程计算出的瞬时理想接触点作为补偿算法的参考点,而不是之前方法中使用的刀尖点。通过理论计算和实际加工的实例验证了该方法的有效性。

关键词:几何误差;平面齿轮;蜗杆磨削;数控机床;多轴数控加工;补偿

1.引言

平面齿轮传动由平面齿轮和小齿轮组成,小齿轮可以是直齿轮、螺旋齿轮、锥形渐开线齿轮等。平面齿轮传动的接触性能相对不敏感,特别是在小齿轮轴方向。由于其独特的啮合特性,平面齿轮已广泛应用于从低功率到高功率驱动器,如镜面驱动器、天线驱动器、挡风玻璃刮水器系统、钓鱼工具、机器人驱动器、汽车和航空航天产品[1,2]。不同的方法已应用于制造平面齿轮,包括成形、滚边、磨削、切割等。成形方法是设计和制造面齿轮的理论基本方法,其中平面齿轮齿表面通常被设计为刨花刀[3]的包络面。王等人[4]提出了一种用球形滚刀制造面齿轮的生成方法,对面齿轮的磨削工作进行了大量的研究。唐等人[5]在锥齿轮数控机床中实现了一种带盘轮型平面齿轮的磨削方法。沈等人[6]研究了多轴数控机床中双冠齿平面齿轮的磨削方法。周等人[7]研究了圆锥渐开线锥齿轮的盘轮磨削。王等人[8]提出了一种在精加工过程中连续产生面齿轮的剃须方法,各种切割方法也被应用于平面齿轮的制造。新的针叶面工艺切割面齿轮,基于标准切割工具和标准锥齿轮机,槽在单一索引模式在两步,并在短切割时间与直针叶弯曲锥齿轮[9,10]。随着格里森的伞齿轮机床的使用,彭等人[9]研究了平面刀具制造平面齿轮运动规则的合成。郭等人也采用了圆形切割机。[10]研究了刀具参数对面齿轮传动机构啮合性能的影响。在粗加工方面,还研究了数控铣削[11]、电化学加工[12]、成型[13]、冲铣[14]和铣削[15]来制造面齿轮。王等人也对其进行了研究,[16]以提高面齿轮加工过程的质量。张等人[17]在 PCSBG 的基本几何参数和接触特征之间建立了一个桥梁。

除上述方法外,面齿轮的蜗杆磨削是制造硬化钢齿轮的有效方法,已得到许多研究者的研究,特别是对于对加工精度和粗糙度都有严格要求的应用Litvin 等[18]研究了面齿轮蜗轮研磨的产生过程、齿面几何形状和应力分析。相关技术也获得了 Litvin等人的专利[19]。周等人[20]研究了面齿轮的工作部分不能完全接地的一种特殊情况,并提出了一种有效的多步长方法来解决这一问题。Shi 等人[21]比较了所研究的磨面齿轮的不同轮廓,并提出了利用生成的磨削方法[22]对正面齿轮的磨削进行研究的先进几何分析。周等人[23]提出了一种针对研磨面齿轮的闭环制造工艺。王等人[24]考虑了研磨力和热量,分析了长半径盘轮磨削后面齿轮的残余应力。

虽然蜗杆研磨面齿轮在理论上可以获得较高的精度结果,但如一般数控加工[25,26]中所述,在实际加工中需要大量注意许多误差源。此外,我们的实际磨削实验表明,几何误差是平面齿轮蜗轮磨削的重要误差来源之一。因此,补偿平面齿轮蜗轮在磨削过程中的几何误差是非常必要的。然而,这个问题在以前的关于平面齿轮制造的工作中很少被讨论。特别是将现有的几何误差补偿方法应用于平面齿轮蜗杆磨削,难以满足高精度要求,稍后将详细介绍。为了明确这一问题,本文对数控机床的几何误差补偿进行了如下回顾。

在进行补偿前,应首先测量和识别数控机床中固有的几何误差。对于三轴数控机床,几何误差通常根据成熟的方法快速测量和识别,包括 ISO10,791 和 ISO230。对于多轴数控机床,由于旋转轴[27]的存在,几何误差的识别比较困难,基于不同的设备,如球形、棒[28]、R-测试[29]、触摸触发探头[30]、激光跟踪器[31]、跟踪干涉仪[32],建立了几何误差的综合模型。根据识别出的几何误差,发展了不同的补偿方法,通常分为两类:硬件方法[33]和软件方法[25]。对于硬件方法,指定的设备被设计用来补偿一个方向上的几何误差。该软件方法是通过在后处理阶段根据所开发的算法修改数控代码来实现的。考虑到我们认为添加硬件设备不方便的实际情况,本工作研究了第二组软件方法,并对相关工作进行了进一步的回顾。

许多学者都研究了多轴数控机床的几何误差补偿问题。朱等人[27]对几何误差的建模、识别和补偿进行了全面的研究。刘等人[34]提出了一个广义的实际逆运动学模型(IKM)来获得补偿运动命令的显式解。与此同时,刘等人[35]还通过考虑五轴数控机床的结构限制,识别和补偿了旋转轴的独立几何误差。Xiang和 Altintas[36]基于螺钉理论建立了五轴数控机床的体积误差模型,并提出了一种补偿 41 个体积误差的策略。后来,Xiang等人[37]还根据螺杆理论研究了一种六轴螺旋锥齿轮铣床的体积误差预测和补偿问题。乔等人[38]采用通用垂直线变换对五轴数控机床的几何误差进行了校准。杨等人[39]提出了一种针对五轴连续数控机床位置独立几何误差的通用识别方法和显式补偿模型。Gu和Agapiou[40]将全局偏移量纳入局部偏移量,以减少加工过程中的误差,并利用迭代和增量的方法进一步最小化零件特征误差。Fu等人[41]提出了一种闭环模式的鸡群优化算法来补偿几何误差。Fu等人[42]基于五轴数控机床的差分变换的乘积实现了几何误差的灵敏度分析和补偿。夏等人[43]提出了一种考虑频率响应的分类补偿方法,以消除齿轮轮机的传动链误差。刘等人[44]提出了一种基于均匀变换的数据驱动的热误差补偿方法。周等人[45]提出了一种基于差分运动矩阵的五轴数控齿轮加工机床的几何误差补偿策略。陈等人[46]利用雅可比矩阵建立了多轴数控机床的刀具姿态误差与补偿误差之间的关系,并基于微分变换理论,采用微分算子计算了这些矩阵。李等人[47]在传统的几何误差模型中增加了一个工件坐标变换,并进行了三次加工检验,工件坐标变换是几何误差模型准确模拟几何误差影响的重要组成部分。夏等人[48]利用齿面姿态误差模型对齿轮的几何误差进行识别和补偿。邓等人[49]采用跟踪干涉仪对多轴数控机床旋转轴上的 10 个几何误差进行了识别和补偿。刘等人[50]首先对体积误差模型进行了灵敏度分析,然后对一种双主轴数控机床进行了几何误差的校准。为了减少几何误差对每个区间形式误差的差异影响,Fan 等人[51]提出了一种基于定量区间灵敏度分析的五轴机床精度提高的新方法。Maeng 和 Min[52]利用机上测量,同时识别和补偿旋转轴和工具设置的位置独立几何误差。Sepahi-Boroujeni 等人[53]采用两种不同的方法来描述用间接校准方法对五轴数控机床几何误差的不确定度估计。陶等人[54]应用随机森林方法对超精度车床的几何误差进行了优先级分析和补偿。夏等人[55]利用齿轮、磨削机床的逆运动学模型,用显式的解析表达式得到了关键几何误差的补偿结果。同时,他们提出了一种基于单轴运动测量和实际逆运动模型[56]的提高工作台几何精度的新方法。徐等人[57]采用双球棒,基于用非整数指数预拟合的误差模型来识别与位置相关的几何误差。Jiang 等人[58]使用双球杆识别五台带有倾斜头和转盘的机床的位置独立几何误差。刘等人[59]构建了等效旋转轴,以识别和补偿五轴数控机床中旋转轴的几何误差。Bi 等人[60]采用自动机上测量的方法来识别和补偿五轴数控机床上旋转轴的几何误差。Wan 等人[31]利用激光跟踪器,通过开发一个基于 GPR 的体积误差模型,来校准和补偿数控机床的几何误差。邓等人[32]采用跟踪干涉仪,通过减少随机因素的影响,间接测量和补偿了多轴数控机床旋转轴的几何误差。李等人[61]提出了一种五轴机床的几何误差识别方法,它考虑了测量点的优化分布和几何误差的准确描述。Kong 等人[62]通过充分应用正六角形截面轴的几何形状来测量和补偿主轴的旋转误差。黄等人[63]提出了一种基于阿贝原理和布莱恩原理的体积误差的综合方法。杨等人[64]利用多波长移相干涉技术和高速 CCD 相机测量特殊设计的微观结构特征在测量旋转台运动后的瞬时绝对空间姿态。通过对一系列瞬时微观结构特征的空间姿态分析,分离了精密旋转台的 6 个自由度误差。

虽然数控机床的几何误差补偿工作已经得到了广泛的研究,但它主要集中在旋转刀具的加工上。虽然相关工作应用于非旋转刀具的加工,如面轮蜗杆的磨削等,但出现了一些问题。为了更好地理解这个问题,将球端铣刀的一般磨削与面齿轮的蜗杆磨削之间的比较如图 1 所示。旋转切割机在同一点与设计面相切,虽然其旋转角度分别由 phi;*(A1)变为phi;* △phi;(A2),但仍与设计面的同一点相切,如(a)所示。但是,当非旋转刀具的旋转角度从phi;*(B1)变为phi;* △phi;(B2)时,如(b)所示,切线变成了超切的情况。有两个主要不同的点。

对刀具旋转角度的影响

对于旋转刀具,从理论几何角度来看,刀具的旋转角度对加工表面没有影响。如图 1(a)所示,当球端铣刀在某一点与设计面相切时,虽然旋转角度由phi;*改为phi;* △phi;,但在设计面的同一点仍与设计面相切。

图1 旋转刀具与非旋转刀具加工的比较

对于非旋转刀具,情况非常不同,刀具的旋转角度直接影响到被加工表面的几何形状或加工精度。如图 1(b)所示,当蜗杆的旋转角度由phi;*改为phi;* △phi;时,理想的切线条件变成超切情况。特别是对于大蜗杆,蜗杆与设计面的理想接触点可能远离蜗杆轴,因此加工误差对蜗杆旋转角度的误差非常敏感。因此,从理论上的几何角度来看,非旋转刀具的旋转角度可能会显著影响加工精度。

参考点的选择

对于旋转刀具,通常选择刀具尖点作为参考点来补偿数控机床的几何误差,刀具尖点的准确位置和刀具轴的准确方向是补偿的目标,以确保加工精度。

对于非旋转刀具,理想的切线条件不仅决定于刀尖点的准确位置和刀具轴的准确方向,而且还包括刀具的准确旋转角度,因此更适合选择理想的接触点作为参考点,而不是刀尖点。同时,由于刀具的理想接触点在生成过程中发生变化,研究实际生成过程对选择参考点非常重要。

根据以上两点,提出一种新的非旋转刀具加工的几何误差补偿方法具有重要意义。不仅要考虑刀具旋转角度的影响,还需要根据实际生成过程选择合适的参考点。在此基础上,提出了一种创新的非旋转刀具多轴数控机床的几何误差补偿方法,并将其应用于正齿轮的蜗杆磨削。首先,介绍了蜗轮研磨面齿轮的齿面生成过程,因此可以确定参考点作为补偿的准备工作。第二,第3节介绍了用于面齿轮蜗杆磨削的数控机床的主要几何误差。然后,在第4节中考虑刀具旋转角度和适当的参考点的影响,根据一个新的模型对几何误差进行建模和补偿。在第5节中给出并讨论了这个例子。

2.正齿轮蜗杆研磨的齿面产生

本节介绍了蜗杆研磨面齿轮根据啮合过程的面齿面产生。

为了设计目的,面齿轮驱动器的小齿轮通常用换档刀代替,以与面齿轮配合,如图2所示。一方面,由于面齿轮与小齿轮共轭工作,面齿轮根据面齿轮啮合过程设计的齿面,切齿轮的齿数通常大于小齿轮以实现面齿轮驱动器[3]的点接触。另一方面,由于面齿轮被蜗杆磨碎,最终根据面齿轮和蜗杆的啮合过程生成(制造)齿面。随后,应精心设计蜗杆表面,以准确地制造面齿轮,并根据刨刀和蜗杆的虚拟啮合过程进行设计。平面齿轮、刨刀和蜗杆之间的啮合过程说明如下。

啮合工艺一:面齿轮和刨床

在面的啮合过程中,面齿轮的齿面是剪切齿面的包络面

图 2 面齿轮、刨刀和蜗杆之间的啮合

齿轮和锥形。如图2所示,平面齿轮和刨刀在啮合过程中沿其自身的轴旋转,角度分别为psi;2 和 psi;s。psi;2和psi;s 有一个固定的比例关系,确定为[3]

(1)其中Ns

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[591074],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。