南京长江漫滩地铁站深基坑开挖的变形及数值模拟分析外文翻译资料

 2022-08-26 16:47:43

Deformation and Numerical Simulation Analysis of Deep Foundation Pit Excavation of Nanjing Yangtze River Floodplain Metro Station

Jiangtao Liu1, Meijun Nie2*, Cunjun Li1 and Jinpeng Yan1

1 China Railway (Shanghai) Investment Group Co., LTD., Shanghai, 200135, China 2 Institute of Geotechnical Engineering, Hohai University, Nanjing, 210024, China Email: 1509928557@qq.com

Abstract. Based on the foundation pit excavation construction of a subway station under the soft soil layer of the Nanjing Yangtze River floodplain, Numerical simulation of foundation pit construction process is carried out to study the deformation law of surrounding soil and surrounding structure during foundation pit construction. The research shows that the established finite element numerical model can better predict the structural and stratum deformation caused by the excavation of the foundation pit; the lateral displacement of the ground wall and the ground settlement behind the wall based on different constitutive models are different, but the overall trend is the same. The lateral displacement of the diaphragm wall presents a 'bulging' pattern. The surface settlement around the pit shows a settlement trough at a certain distance from the connecting wall. The horizontal displacement of the diaphragm wall increases with the increase of the excavation depth of the foundation pit, and the maximum horizontal displacement occurs above the excavation surface. The conclusions obtained have certain guiding significance for subsequent construction and parameter optimization.

Keywords. Deep foundation pit, foundation pit deformation, constitutive model, numerical simulation.

Introduction

With the advancement of modernization, more and more urban construction projects in recent years, the continuous development of underground space requires complex foundation pit technology to support. Based on two deep and large foundation pits in Shanghai soft soil area, Wu C J et al. studied the influences of the shallow soft soil thickness and excavation area on the deformation of the enclosure structure and the soil around the pit [1]. Lin F et al. explored the influence of the foundation pit enclosure system on the enclosure structure and soil deformation around the pit [2-4]. Due to the complexity of foundation pit construction, foundation pit accidents occur from time to time, which has caused considerable impact on the economy and peoples safety. In order to reduce the probability of foundation pit accidents, the finite element method is used to simulate the construction process of the foundation pit, and combined with the actual measurement on site, various indicators in the foundation pit construction are predicted. Wang W D et al. measured the parameters of the constitutive model used in the numerical simulation more accurately through laboratory tests, so as to make better predictions [5]. Tan Y and other

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

scholars monitored the deformation of the foundation pits enclosure structure and uplift of the pit bottom, so as to controlling the impact of foundation pit excavation on existing surrounding structures [6-7].

Based on a subway station project on the Yangtze River floodplain in Nanjing, this paper comprehensively uses on-site monitoring and numerical simulation methods to conduct a systematic study on the lateral displacement of the ground wall and the ground settlement behind the wall caused by the construction of soft soil foundation pits to guide Subsequent construction of similar projects.

Project Overview

Mochou Lake Station is located on the banks of the Qinhuai River in Jianye District, Nanjing. It is interchangeable with Mochou Lake Station on Line 2. The excavation depth of the foundation pit is 34 m. The station has 5 entrances and exits, of which 3 are passenger entrances and exits (2 are emergency evacuation safety exits), and there are 2 fire evacuation exits. The main structure of the station is a double- column three-span box frame with a column spacing of 9 meters. The total length of the station structure is

160.00 m, the total width of the standard section structure is 22.15 m, and the roof covering thickness is about 2.50 m.

For soft soil foundation, the enclosure structure of deep earth diaphragm wall support is adopted to form a stable and reliable enclosure structure of 'underground foundation pit', which can withstand the large lateral soil pressure caused by the excavation of large and deep foundation pit and reduce the vertical settlement of soil outside the pit. The superstructure works smoothly, the working site is relatively wide, the excavation and construction are convenient, and the construction speed is fast. When the substructure is reversed, the floor acts as a part of support, which reduces the lateral deformation of soil. The construction method combined with positive and negative factors has obvious effect considering the double influence of time limit and soil settlement. The reinforcement of the pit bottom can reduce the displacement of the maintenance structure during the excavation stage and improve the soil resistance of the ground floor of the station.

    1. Overview of Foundation Pit

The depth of the station foundation pit is about 34 m and the width is about 21.9 m. The top-down construction method is adopted for the open-cut and smooth construction underground two-story and three-story underground floor frame. Enclosure structure adopts 1200 mm thick un

剩余内容已隐藏,支付完成后下载完整资料


南京长江漫滩地铁站深基坑开挖的变形及数值模拟分析

摘要-在南京长江漫滩软土层下一个地铁站基坑开挖施工的基础上,对基坑施工过程进行了数值模拟,研究了基坑施工过程中周围土及周围结构的变形规律。研究表明,所建立的有限元数值模型可以更好地预测基坑开挖引起的结构和地层变形,基于不同构造模型的地墙横向位移与墙后地面沉降不同,但总体趋势相同。隔膜壁的横向位移呈现出一种“凸起”的模式。矿坑周围的表面沉降显示出与连接壁有一定距离的沉降槽。隔膜墙的水平位移随着基坑开挖深度的增加而增大,最大水平位移发生在开挖面以上。所得结论对后续的构造和参数优化具有一定的指导意义。

关键词-深基坑、基坑变形、本构模型、数值模拟等。

1.项目简介

随着现代化的推进,近年来城市建设项目的不断增多,地下空间的不断发展需要复杂的基坑技术来支撑。基于上海软土区两个深大基坑,吴等人研究了浅层软土厚度和开挖面积对围护结构和坑[1]周围土变形的影响。林等人探讨了基坑围护系统对围土变形的影响。由于基坑施工的复杂性,基坑事故不时发生,对经济和人民安全造成了相当大的影响。为了降低基坑事故的概率,采用有限元法模拟基坑施工过程,结合现场实际测量,预测基坑施工中的各种指标。王等人通过实验室试验,更准确地测量了数值模拟中使用的本构模型的参数,以便对[5]作出更好的预测。谭及其他学者们对基坑围护结构的变形和基坑底的隆起进行了监测,以控制基坑开挖对现有周围结构的影响[6-7]。

基于南京长江漫滩地铁站工程,综合采用现场监测和数值模拟方法,对软土基坑施工导致的地墙横向位移和墙后地面沉降进行了系统研究,指导类似工程的后续施工。

2.项目概况

莫愁湖站位于南京市建邺区秦淮河畔。可与2号线的莫愁湖站互换。基坑开挖深度34m,本站有5个出入口,其中旅客出入口3个(应急疏散安全出口2个),消防疏散出口2个。车站的主要结构为双柱三跨箱框,柱间距为9米。车站结构的总长度为:

160.00m,标准断面结构总宽22.15m,屋面覆盖厚度约2.50m。

软土基础采用深土隔墙 支架围护结构,形成稳定可靠的“地下基坑”围护结构,能够承受大深基坑开挖造成的大侧土压力,减少坑外土壤的垂直沉降。上部结构施工顺利,工作场地较宽,开挖、施工方便,施工速度快。当子结构反转时,地板作为支撑的一部分,这减少了土壤的横向变形。考虑工期和土壤沉降的双重影响,施工方法结合消极因素的影响明显。坑底加固可减少开挖阶段维修结构的位移,提高电站底层的抗土性。

2.1基坑工程概况

站内基坑深度约34m,宽度约21.9m。 地下两层、三层地下地面框架,采用自上而下的施工方法。外壳结构采用1200mm厚的地下连续墙,采用老虎铣床施工,墙长64.0m。基坑深度内设6个座,基坑深度设9个座。第一、五、六为钢筋混凝土支撑,第二、三、四为Phi;609钢支撑。图1为基坑平面图(基坑为黄色区域)。

图一 基坑平面图

2.2 水文地质学:

项目场地土层地质较为复杂,表1为土壤质量和深度。

表一 修正的莫尔库仑参数

其他填充物

泊松比

0.34

0.32

0.28

0.3

0.29

0.33

0.31

0.26

散装密度/kN/msup3;

18.7

17.9

18.8

18

18.8

18

19

22.9

渗透率:e-6cm/s

100

5

500

50

3000

200

20000

10

k0

0.74

0.39

0.53

0.3

0.36

0.33

0.3

初始空白比e0

0.938

1.134

0.834

1.072

0.864

1.012

0.762

卸载模量

18900

16950

41000

22300

42950

25250

49750

42500

摩擦角度为

14.75

14.21

26.71

20.2

28.71

21.36

31.57

48

粘合度/kPa

20.54

13.07

8.03

14.15

7.66

11.41

7.13

5

厚度/m

4

7

4

4

4

4

8

粉质粘土

粉淤泥

粉质粘土

粉质粘土

风化岩

在调查过程中,通过潜水测量了场地的埋葬深度。根据测量结果,场地地下水深为0.70~2.50m,平均高程为5.39m,稳定水位为0.90~2.30m,平均高程为5.49m。据调查,拟建场地地下水主要储存在填土和新沉积土中。年水位变化1~2m,场地历史上最高的地下水位接近地表。

2.3监测计划

本文主要研究了地下隔膜墙的水平位移和不同施工条件下基坑周围土壤沉降的变化规律。图2为基坑周围监测点的布置图。

图2 地墙监测点布置

3.基坑开挖数值模型的建立

3.1有限元软件与材料本构模型

本文采用通用大型岩土工程有限元软件Gtsnx进行模型建模,利用改进的莫尔库仑、剑桥模型和关口-Ota模型计算了土体本构模型,并进行了比较。修正的莫尔库仑可以考虑土壤的压缩硬化和剪切硬化,可以更好地模拟土壤的卸载效果;修改后的剑桥模型通常用于通常固结或弱固结的粘土;修改后的网关-Ota模型和修改后的剑桥模型。参数是相同的,但两者的产量轨迹是不同的。由于空间的限制,现在只解释了修正的摩尔库仑参数。修正后的摩尔库仑参数见表1所示。

3.2 模型的建立

基坑开挖的影响范围为水平方向开挖深度的3-5倍,垂直方向为开挖深度的2-4倍。本工程基坑开挖深度为33m,其中南北直角侧长158m,东西直角侧长26m,为长而窄的深基坑。结合影响范围,建立了模型长times;宽times;高=360mtimes;230mtimes;100m的三维模型。图3显示了基坑的三维模型。

图3 基坑模型

3.3 开挖步骤

开挖步骤不仅符合施工,而且不多会导致计算太慢,建模中进行了一些简化。由于空间的限制,挖掘步骤只写到二楼,但后来的结果的比较是基于四楼的完成。表2显示了基坑开挖的详细过程。

表2 基坑开挖步骤。

操作步骤 施工内容

  1. 施工支架1
  2. 施工支护2 土层开挖0-7m
  3. 施工支架3 土层开挖7-11m

施工支承4 负二层底板 土层开挖1117m

4

  1. 拆除二楼负层的支撑3/4 屋顶
  2. 拆除一层负极的支撑件2 屋顶

4.实际测量结果分析及有限元计算结果

选择7-7横断面进行监测点分析,位置位于地墙水平位移监测点ZQT10、ZQT11连接线(位置见图2)。

4.1具有不同本构模型的隔膜墙的水平位移

图4显示了地下隔膜墙水平位移监测点ZQT10的测量值与数值模拟结果的比较(监测点的位置如图2所示)。

rul] 语(pp)

0 $0 100 1$0 sup2;00

0

–10

–sup2;0

小时(p)

–30

–40

0amp;amp;

00amp;

0rqlwrulqjydoxh

图4不同本构模型的隔膜壁的横向位移

从两个本构模型的数值计算结果和监测值的比较,在图中4、可以看出:(1)从隔膜壁横向变形随深度的变化来看,数值计算和测量值两个本构模型中间上下端小,中间大,地面连接墙上下的横向位移接近0,表明第一层支撑和檩条的刚度足够,限制了地面连接墙的顶部。位移还表明,地面连接墙的预埋深度足够,有效地限制了壁底的位移。(2)随着基坑开挖深度的增大,隔膜墙的水平位移也在增加,隔膜墙的最大水平位移始终保持在开挖面之上。随着基坑土壤开挖和卸料,基坑外土壤土压逐渐增大,导致基板壁横向位移不断增加。(3)在两种本构模型中,MCC模型是最接近测量值的趋势的,这也表明,在软土壤区域,使用该本构模型可以更好地模拟真实情况。

从以上分析可以看出,本文建立的数值模型可以预测基坑开挖过程中挡土结构的变形,并为后续施工提供指导。

4.2 不同本构模型矿坑周围的表面沉降

不同本构模型的矿坑周围的表面沉降情况如图5所示。

0 20 40 60 80

0

00amp;

0amp;amp;

0rqlwrulqjydoxh

–$0

请文件(页)

–100

–1$0

图5 不同本构模型的墙后的表面沉降

从图5可以看出,两种组成模型和坑周围土壤地表沉降监测值均具有与地面连接墙有一定距离的沉降槽,但沉降槽的位置略有不同。MCC的模型不同于。监测值最为接近。同时,随着距离的增大,基坑周围土的沉降首先增加,然后减至0,表明基坑开挖水平方向的影响范围为开挖深度的3~5倍。

5.结论

本文采用两种现场测量和数值模拟方法,研究了南京长江漫滩地铁站深基坑挡土结构及周边地层的变形特征,得出以下结论:

该三维模型可以预测开挖过程中支撑结构的横向变形。随着基坑开挖深度的增加,隔膜墙的水平位移也在增加,隔膜墙的最大水平位移始终保持在开挖面之上。在两种本构模型中,MCC模型与监测值很一致。

本文建立的三维有限元模型可以预测基坑开挖过程中周围地面的变形。离地面连接墙一定距离处出现沉降槽。随着距离的增大,基坑开挖的影响逐渐减小并逐渐消散。

参考文献

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[406006],资料为PDF文档或Word文档,PDF文档可免费转换为Word

  1. WuCJ、SunZH、LaiYJ、宝H2018软土区岩土力学深度大开挖引起的隔膜壁变形特性研究39(S2)245-253。
  2. 林福2014年复杂环境条件下深基坑固定系统优化设计中国岩土工程杂志36(S1)39-45。
  3. 刘GB、黄P、石W2016深挖性能及其对上海软土性能期刊30(6)1-14的影响。
  4. 王JH、徐ZZ和王WD2010上海岩土与岩土环境工程杂志136(7)985-994。
  5. WangWD、WangHR和XuZH2012基坑岩土力学开挖硬化土模型参数数值分析实验研究33(8)22832290。
  6. 谭、魏、周X2015上海地铁站施工经验教训快速开挖、及时支撑、及时铸造、分段施工《建设设施施工性能学报》29(4)04014096。
  7. lt;
原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。