Electrical Energy Transmission
Growing populations and industrializing countries create huge needs for electrical energy. Unfortunately, electricity is not always used in the same place that it is produced, meaning long-distance transmission lines and distribution systems are necessary. But transmitting electricity over distance and via networks involves energy loss. So, with growing demand comes the need to minimize this loss to achieve two main goals: reduce resource consumption while delivering more power to users. Reducing consumption can be done in at least two ways: deliver electrical energy more efficiently and change consumer habits. Transmission and distribution of electrical energy require cables and power transformers, which create three types of energy loss: the Joule effect, where energy is lost as heat in the conductor (a copper wire, for example); magnetic losses, where energy dissipates into a magnetic field; the dielectric effect, where energy is absorbed in the insulating material. The Joule effect in transmission cables accounts for losses of about 2.5 % while the losses in transformers range between 1 % and 2 % (depending on the type and ratings of the transformer). So, saving just 1 % on the electrical energy produced by a power plant of 1 000 megawatts means transmitting 10 MW more to consumers, which is far from negligible: with the same energy we can supply 1 000 - 2 000 more homes. Changing consumer habits involves awareness-raising programmers, often undertaken by governments or activist groups. Simple things, such as turning off lights in unoccupied rooms, or switching off the television at night (not just putting it into standby mode), or setting tasks such as laundry for non-peak hours are but a few examples among the myriad of possibilities. On the energy production side, building more efficient transmission and 2 distribution systems is another way to go about it. High efficiency transformers, superconducting transformers and high temperature superconductors are new technologies which promise much in terms of electrical energy efficiency and at the same time, new techniques are being studied. These include direct current and ultra high voltage transmission in both alternating current and direct current modes.
Disturbing loads like arc furnaces and thyristor rectifiers draw fluctuating and harmonic currents from the utility grid. These non sinusoidal currents cause a voltage drop across the finite internal grid impedance, and the voltage waveform in the 3 vicinity becomes distorted. Hence, the normal operation of sensitive consumers is jeopardized. Active filters are a means to improve the power quality in distribution networks. In order to reduce the injection of non sinusoidal load currents shunt active filters are connnected in parallel to disturbing loads (Fig. 1). The active filter investigated in this project consists of a PWM controlled three-level VSI with a DC link capacitor.The VSI is connected to the point of common coupling via a transformer. The configuration is identical with an advanced static var compensator. The purpose of the active filter is to compensate transient and harmonic components of the load current so that only fundamental frequency components remain in the grid current. Additionally, the active filter may provide the reactive power consumed by the load. The control principle for the active filter is rather straightforward: The load current ismeasured, the fundamental active component is removed from the measurement, and the result is used as the reference for the VSI output current. In the low voltage grid, active filters may use inverters based on IGBTs with switching frequencies of 10 kHz or more. The harmonics produced by those inverters are easily suppressed with small passive filters. The VSI can be regarded nearly as an ideally controllable voltage source. Inmedium voltage applications with power ratings of several MVA, however, the switching frequency of todayrsquo;s VSIs is limited to some hundred Hertz. Modern high power IGCTs can operate at around 1 kHz. Therefore, large passive filters are needed in order to remove the current ripple generated by the VSI. Furthermore, in fast control schemes the VSI no longer represents an ideal voltage source because the PWM modulator produces a considerable dead-time. In this project a fast dead-beat algorithm for PWM operated VSIs is developed [1].This algorithm improves the load current tracking performance and the stability of the active filter. Normally, for a harmonics free current measurement the VSI current would be sampled synchronously with the tips of the triangular carriers. Here, the current acquisition is shifted in order to minimize the delays in the control loop. The harmonics now included in themeasurement can be calculated and subtracted from the 4 VSI current. Thus, an instantaneous current estimation free of harmonics is obtained.5 111th Congress include S. 539, the Clean Renewable Energy and Economic Development Act, introduced on March 5, 2009; and the March 9, 2009, majority staff transmission siting draft of the Senate Energy and Natural Resources Committee. The policy issues identified and discussed in this report include: Federal Transmission Planning: several current proposals call for the federal government to sponsor and supervise large scale, on-going transmission planning programs. Issues for Congress to consider are the objectives of the planning process (e.g., a focus on supporting the development of renewable power or on a broader set of transmission goals), determining how much authority new interconnection-wide planning entities should be granted, the degree to which transmission planning needs to consider non-transmission solutions to power market needs, what resources the executive agencies will need to oversee the planning process, and whether the benefits for projects included in the transmission plans (e.g.,
剩余内容已隐藏,支付完成后下载完整资料
英语译文共 7 页,剩余内容已隐藏,支付完成后下载完整资料
资料编号:[613136],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。