CHALLENGES OF CONNECTING SHIPBOARD MARINE SYSTEMS TO
MEDIUM VOLTAGE SHORESIDE ELECTRICAL POWER
Yur Khersonsky,Moni Islam,Kevin Peterson.
IEEE Transactions on Industry Applications.2007,3(43):838-844.
Abstract - Ship service electrical power consumption at the pier side is rapidly growing and now exceeds 10MW power range on many of the latest commercial ships. Short circuit current interruption capability of the switchgear and cables servicing the ship load at the port dictate the use of medium voltage power distribution systems at voltages from 5 to 21 KV range. Many of the high power medium voltage electrical loads must operate during unloading and loading of the docked ships. At the same time Environment protection regulations in many sea ports (Californias largest ports are
examples of the most restrictive requirements) do not allow ships to operate their prime movers inside the ports. Many ships operators and port authorities are struggling with the absence of appropriate standards and specifications for interconnecting the ship service loads to on-shore power distribution systems. The intent of this paper is first to review the theory, practice and existing interconnection standards and then to outline what can be done to achieve secure, reliable, safe and cost effective operation of the ship service loads inside international ports. The paper will review current state of cold ironing and existing applicable standards for ship interconnections to shore power, proven techniques for shore power interconnections, as well as approaches to mitigate challenges of high power and high voltage shore power.
1. INTRODUCTION
International shipping has improved quality of life tremendously by transporting refrigerated goods container ships, cruise ship industry, bulk goods carriers, tankers loading and unloading oil etc. In present day technology the speed of performing these tasks provides economic advantage for the ports. The shore side operation of these ships (vessels by ABS and Lloyd Register definitions) demands more electrical power then the traditional ship board shore power. Natural Resources Defense Council in its August 2004 report 'Strategies to Clean up the US Ports [1] indicated that marine ships contribute substantial quantities of air pollution by running onboard diesel auxiliary engines for power while they are at dock. This hoteling,' as it is known, contributes significant but unnecessary pollution, aggravated by auxiliary engines run on bunker fuel-the dirtiest grade of diesel. This measure therefore employs a strategy of hooking docked marine ships to less polluting power sources and is a critical step to reducing emissions from marine ships.
Plugging in to- shore-side power, also known as 'cold ironing,' should make use of near-zero or zero emissions technology to provide cleaner power to docked ships. Several ports throughout the world, including Los Angeles,
California; Juneau, Alaska; and Gothenburg, Sweden, have already implemented shoreside power measures. Specifically, this measure calls for ports to:
1. require shore-side power as a condition of new
terminal leases or renewals;
2. invest in infrastructure for electric power;
3. develop shoreside power for port-operated facilities;
4. subsidize the development of shoreside power for
harbor craft;
5. provide funding to offset the costs of retrofitting
ships to accommodate shoreside power.
The Swedish port of Gothenburg has led the way on commercial shoreside power installations. The system has operated since the year 2000 without problems. It utilizes a 10 kV cable and transforms the electricity on-board to 400
volts DC. Shore-power is supplied by local surplus wind generated power. Terminal operators make the power connections and disconnections. It takes less than 10 minutes to complete the process.
Ships hotelling power demand ranges from 1 to 1.5 MW. The Gothenburg project alone has reduced 80 tons of NOx, 60 tons of SOx, and 2 tons of PM emissions annually because of shoreside power used by ferries and several cargo ships. Efforts are currently under way to replace fossil-fuel- based shoreside energy with nearby wind energy.
The Princess Tours cruise line followed suit in 2001, installing shoreside power at its terminal in Juneau, Alaska, after incurring several fines averaging $27,500 each for visible smoke from its cruise ships. Although some minor technical difficulties arose during the design and construction phases of the project, they proved surmountable. In fact, Princess reports that the project is working well and that it is pleased with the program overall.
In 2002, the City of Los Angeles signed a MOU with six shipping lines to participate in the development of the Alternative Maritime Power (AMP) program at the Port of Los Angeles. This MOU acknowledged the signatories
intent to research and develop an electric infrastructure that would allow ships to plug into electric power while at berth (shoreside power).
The Port of Los Angeles unveiled the worlds first electrified container terminal in June 2004, where ships can plug in to shoreside power while at berth instead of continuously running their dirty diesel engines to generate electricity. The new China Shipping Line terminal facility is expected to eliminate at least 1 ton per day of nitrogen oxides and particulate matter for each ship that plugs in, and can accommodate two ships at one time, according to the Port of Los Angeles.
The Port of Long Beach, California completed its year-long feasibility study in early 2004 on electric power for ships at berth and found shoreside power to be cost-effective for some applications including cruise and container ships [2].
Esti
剩余内容已隐藏,支付完成后下载完整资料
船舶电站连接中压岸电的挑战
作者Khersonsky, Y; Islam, M; Peterson, K
发表于IEEE工业应用, 2007, 卷 43, 期 3,第838-844页.
摘要:船舶靠码头的电力消耗增长迅速,许多最新的商船已超过10兆瓦功率范围。开关装置的短路电流中断能力和给在港船舶输送电能的电缆决定了需要使用5至21千伏范围的中压配电系统。许多大功率的中压电气负载必须在船舶靠港卸载和装载过程中操作。同时许多港口的环保规则(加州最大的港口是要求最严格的例子)不允许船舶在港内启动原动机。许多船东和港口当局都致力于解决将船舶负载连接到岸上配电系统所需要的标准和规范。本文的目的是先审查理论、实践和现有的互连标准,然后论述怎么实现在国际港口内船舶服务负载的安全、可靠、安全和成本有效地运行。本文将回顾现有的岸电技术和船舶互连岸电的适用标准,已经被验证的岸电互连技术和解决大功率与高压岸电难题的方法。
I.引言
国际航运业通过运输冷藏货物的集装箱船,游轮业,散装船,油轮装卸油等的使用,已经将生活质量大大提高。以现今的技术执行这些任务的速度为港口带来了经济优势。这些船的岸边操作(船由ABS和劳埃德注册)比传统的船舶电站需要更多的电能。自然资源保护委员会在其2004年8月的报告“让美国港口变清洁的策略[1]指出,海洋船舶在码头通过运行船载柴油发电机获得电能造成了大量的空气污染。生活负载造成了大量但不必要的污染,由于辅机通过燃烧重油(柴油中最污浊的成分)加重了污染。因此这个措施采取了将停港海洋船舶与较少污染的能源挂钩的战略,也是海洋船舶减排的关键步骤。
岸电技术也被称作“冷铁”,利用近零或零排放技术给停靠船只提供清洁能源。在世界各地,包括加利福尼亚州、洛杉矶、朱诺、阿拉斯加、瑞典和哥德堡几个港口,已经实施了使用岸电的措施。具体而言,这个措施对港口的要求:
1.要求岸电作为新港口租赁和续约的条件;
2.投资岸电的基础设施;
3.建设岸电的港口操作设施;
4.投资岸电发展的海港工艺;
5.给接受岸电的船舶提供改造资金。
瑞典哥德堡港率先建设了商业岸电装置。这个系统自2000年以来一直正常运行。它使用了10千伏电缆,将电能转变为400伏直流电接到配电板上。岸电由当地富余风力发电机供电。终端控制者决定电源连接和断开。不到10分钟就完成连接岸电的整个过程。
船舶生活负载的电力需求为1至1.5兆瓦。光是哥德堡项目,因为渡轮和几个货船使用岸上电力,每年减少80吨氮氧化物60吨的SOx和2吨PM排放量。用附近的风能替代沿岸以化石燃料为基础的能源,也正在努力尝试中。
由于游船排放可见烟雾,处置了几起平均27,500美元的罚款。在2001年,公主邮轮旅游线路纷纷效仿,在其朱诺和阿拉斯加安装岸上岸电电源终端。尽管在项目的设计和施工阶段都出现一些次要的技术难点,他们最终证明了都可以克服。事实上,“公主”报告称该项目运作良好,这对整体方案来说都是一个好消息。
2002年在洛杉矶港口,洛杉矶市与六条航线签署了一份谅解备忘录来参与到替代海事功率(AMP)计划的发展中。该备忘录的意图就是研究和开发电动基础设施,从而让船舶在泊位的时候连接到电源(即岸电)。
2004年6月洛杉矶港对外公布了世界第一条电气化箱体终端,船舶可以在泊位连接到岸电,避免了使用柴油发电机发电。洛杉矶港新中国航运码头岸电终端设施可同时容纳两艘船舶,预计每艘连接岸电的船舶每天至少减少排放一吨氮氧化物和微粒物质。
2004年初加利福尼亚州长滩港在完成了为期一年为靠港船舶提供电力的可行性研究,发现包括邮轮和集装箱船在内的一些船舶使用岸电是具有成本效益的[2]。
表1中给出研究选定的船舶平均电能消耗需求:
船种类 |
船名 |
总注册吨位 |
发电机数量 |
发电机装机容量(千瓦) |
平均负荷(千瓦) |
负载系数(容量%) |
成本效益是/否 |
集装箱船 |
Victoria Bridge |
47,541 |
4 |
5,440 |
600 |
11% |
否 |
Hanjin Paris |
65,453 |
4 |
7,600 |
4,800 |
63% |
是 |
|
Lihue OOCL California 2 |
26,746 66,046 |
2 4 |
2,700 8,400 |
1,700 950 |
63% 62% |
否 是 |
|
冷藏船 游船 |
Chiquita Joy Ecstasy |
8,665 70,367 |
5 2 |
5,620 10,560 |
3,500 7,000 |
62% 66% |
是 是 |
油轮 |
Alaskan Frontier |
185,000 |
4 |
25,200 |
3,780 |
15% |
是 |
Chevron Washington |
22,761 |
2 |
2,600 |
2,300 |
89% |
否 |
|
Groton |
23,914 |
2 |
1,300 |
300 |
23% |
否 |
|
干货船 汽车船 |
Ansac Harmony Pyxis |
28,527 43,425 |
2 3 |
1,250 2,160 |
625 1,510 |
50% 70% |
否 否 |
破冰船 |
Thorseggen |
15,136 |
3 |
2,100 |
600 |
29% |
否 |
表1 船上平均电能需求
只有5艘配有中压配电系统的船舶具有成本效益。
其他北欧港口,例如德国吕贝克,目前正在寻求为在波罗的海港口的岸电技术建立标准的技术要求。港口为其渡口和客运码头计划设置10千伏通岸接头。该市毗邻以健康温泉著称的城市,但S02阈值在冬季超标,因此对这个城市的名声有负面影响。在吕贝克使用剩余风力发电将使得岸电发电的成本只有船舶发电的四分之一。吕贝克市正在所有的波罗的海港口城市进行更广泛岸电“规划波罗的海21”。
II.岸电技术的现状
参考“岸电成本效益研究”[2]得到的现在世界各地岸电技术应用的总结如:
1.在阿拉斯加朱诺港的公主邮轮
世界上第一台岸电设备是在阿拉斯加的朱诺港。2001年7月24日,公主邮轮中的“黎明公主号”进行了10小时的岸电连接操作。到2002年邮轮季节,五艘所有的公主邮轮在朱诺港停泊的时候都使用岸电。这个岸电设备只服务公主客船,货船不能使用该岸电设施。
岸电是由阿拉斯加电光源及电源公司(AEL amp;P)从其本地富余水电供电。
朱诺岸电系统同时提供了电力和蒸汽,蒸汽是由一个电热锅炉产生。应当指出,为了防止锅炉在启动时过度冒烟,即使船舶在码头靠泊时锅炉也是在一个低火模式下运行。使船电和岸电保持同步而进行的改造船舶电源管理系统需要很大的成本(约$ 150,000每艘)。每艘船舶都安装了一个新的门,电气连接柜,以及一些必要的自动将船舶电网连接到陆地电网的设备。
每艘船的技术办公区第四层甲板作为电源连接进入的点。一个2.5米长的钢4-舱壁被安装到相邻的钢甲板之间为连接到一个高电压(6.6 KV)电源提供所需的A-0防火级的条件。太阳级船舶有四个苏尔寿16ZAV40S发动机驱动四个GEC发电机提供6.6KV,3相,60 Hz的电源。每个太阳级船最初是在其配电板设置一台备用6.6千伏断路器,船上的电缆连接是采用的传统的插头/插座连接,这种连接方式由美国的采矿业得来的。
岸电经由岸上的三相变压器变压后通过四条3-英寸直径的柔性电缆传送到船上。一个特殊的135英尺长25英尺高的龙门系统内置于底座,用来支承连接设备、连接电缆和插头。传输设备已经设计好来适应20英尺变化的潮位和抵御每小时一百英里的风。电缆连接和断开由公主邮轮船员进行操作,但岸上变电站是由AELamp;P人员操作。拉电缆上船,把它们连接到船舶控制单元,并开始使用岸电让船舶运行需要20分钟到最多两个小时的时间,断开岸电也需要同样多的时间。流程的安全是通过人员培训和执行过程清单解决的。
船舶电源管理系统(PMS)修改后把岸电当作一种额外的(第五台发电机)船载发电系统。这个系统使船电和岸电保持同步,调整船电电压直到和岸电电压一致,然后调节船电的频率和相位,直到船电和岸电的电源特性保持一致。
公主邮轮太阳级船需要7兆瓦的6.6千伏电能,但至尊级船在泊位将需要11兆瓦的电能。在西雅图港,公主邮轮公司已经完成其最新的船舶-钻石公主号岸电设备改装。新建成的钻石公主号于2004年4月交付给公主邮轮公司。它在建造中就安装了岸电连接所需的所有设备,在泊位所需电能预期在8——9兆瓦。
2.加利福尼亚州匹兹堡的浦项制铁干散货船
浦项钢铁公司(POSCO)从加利福尼亚州匹兹堡港承包了4艘干散货船进行韩国和旧金山湾区之间的海洋运输。这些船都在浦项制铁公司的匹兹堡船坞安装了岸电系统,四艘船都在1991年到1997年之间在韩国完成建造,全部都安装了岸电设备。浦项制铁公司的匹兹堡港是这些船舶连接岸电的唯一地方。在浦项制铁公司的匹兹堡港口连接到岸电的第一艘船是在1991年。这些船通常载重38,000吨,约180米长。岸电是由两个440伏的电缆传输。总电路安装了一个800安培的断路器,将负荷限制到0.5兆瓦。船舶每次到访平均能有48 小时的泊位。船停泊后,由两名船员拉电源线到船上将其连接到船上的电路,并测试极性。浦项制铁公司的终端操作员根据船舶操作员的请求接通岸电回路。这需要三个人长达20分钟才能完成该过程。根据操作员,电源要在没有消隐发生时达到同步。
3.在瑞典哥德堡港停泊的船舶
哥德堡港有两个客船和滚装船(RO-RO)的码头安装了岸电终端。靠泊的船只已指定停泊地点和定期固定的航行路线。自2000年以来这个系统一直正常运行。它使用了10千伏电缆,并将电源转变为400伏直流电接到配电板上。岸点由当地富余风力发电供电。终端操作员控制电源的连接和断开。整个过程不到10分钟就完成。船舶运转的电能需求为1至1.5兆瓦。此外,在目前的电力的价格水平下,船舶使用岸电的成本比使用自己发电机成本更低。哥德堡港认为如果更多的港口提供一个标准化的在岸电连接规则,将有更多的船只改装他们的船舶。不同的电压、频率和安全问题是岸电技术推广的挑战。应该指出的是渡船连接岸电只为照明和通风的目的。此外,轮渡船没有货物搬运机器,只有少量码头边的活动。因此哥德堡电气化过
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[146250],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。