An updatable holographic three-dimensional display
Savascedil; Tay , P.-A. Blanche , R. Voorakaranam , A. V. Tunc , W. Lin , S. Rokutanda , T. Gu , D. Flores , P. Wang , G. Li , P. St Hilaire , J. Thomas , R. A. Norwood , M. Yamamoto amp; N. Peyghambarian
Holographic three-dimensional (3D) displays provide realistic images without the need for special eyewear, making them valuable tools for applications that require situational awareness, such as medical, industrial and military imaging. Currently commercially available holographic 3D displays use photopolymers that lack image-updating capability, resulting in restricted use and high cost. Photorefractive polymers are dynamic holographic recording materials that allow updating of images and have a wide range of applications, including optical correlation, imaging through scattering media and optical communication. To be suitable for 3D displays, photorefractive polymers need to have nearly 100% diffraction efficiency, fast writing time, hours of image persistence, rapid erasure, and large area—a combination of properties that has not been shown before. Here, we report an updatable holographic 3D display based on photorefractive polymers with such properties, capable of recording and displaying new images every few minutes. This is the largest photorefractive 3D display to date; it can be recorded within a few minutes, viewed for several hours without the need for refreshing, and can be completely erased and updated with new images when desired.
A considerable amount of research has been dedicated to the development of 3D imaging, because two-dimensional (2D) images give only limited information about an object or a scene owing to their lack of parallax and depth. 3D imaging techniques that rely on special eyewear have unwanted side-effects such as eye fatigue and motion sickness. Holographic 3D displays do not incur these problems because they are viewable with the naked eye (autostereoscopic) and simulate natural human vision. Humans are naturally attracted to holograms, which is why holography has found wide applications in advertisement and entertainment. Current static holographic displays are capable of displaying terabytes of data, and come in practically any size with full colour, full parallax and depth. Previously, dynamic 3D holographic displays based on acoustooptic, liquid-crystal displays and microelectromechanicalsystems-based recording media have been demonstrated. Unfortunately, these devices do not have memory, and thus do not exhibit persistence of recorded images. The lack of persistence results in the requirement of update rates faster than 30 Hz to avoid image flicker. 3D images exhibit very high information content, so this high refresh rate requirement currently limits real-time holographic displays to small sizes. Photorefractive inorganic crystals are dynamic holographic storage materials that have memory, but scaling them to the large sizes needed for 3D displays is challenging. Photothermoplastics provide reversible recording by using surface relief gratings, but they suffer from limited diffraction efficiency and usually require a post-recording developing process. To extend dynamic holographic 3D displays towards practical applications, alternative materials with high efficiency, reversible recording capabilities, memory and significantly larger sizes are needed.
Photorefractive polymers are dynamic holographic recording materials capable of fulfilling these requirements. In photorefractive polymers, a 3D refractive index pattern—a phase hologram— replicates the non-uniform interference pattern formed by two incident coherent light fields. This effect is based on the build-up of an internal space-charge field due to selective transport and trapping of the photo-generated charges, and an electric-fieldinduced index change via the photorefractive effect (ref. 5 and references therein and ref. 4). This process—in contrast to the photochemical processes involved in photopolymer holograms—is fully reversible, because trapped charges can be de-trapped by uniform illumination. The erasibility of the photorefractive gratings allows for refreshing/updating of the holograms. In a typical photorefractive material the holograms are viewed with the help of a reading beam, as long as the initial writing (recording) beams are present. When the writing beams are turned off, the photorefractive hologram decays at a rate determined by the material properties and ambient thermal processes. Photorefractive polymers that have fast recording usually have high decay rates. For updatable 3D displays, however, a material with rapid recording and slow decay (long persistence) is required. A figure-of-merit (FOM) for the design of recording media for spatially multiplexed 3D displays can be the ratio of storage time to the total recording time during which the writing beams are turned on, per holographic element (hogel). In most photorefractive materials the FOM is close to 1, which is far smaller than the FOM . 1,000 required for use in updatable 3D displays with large enough size and resolution.
We have developed photorefractive polymer composites that combine these properties, suitable for use in updatable 3D displays. The composite consists of a copolymer with a hole-transporting moiety and a carbaldehyde aniline group (CAAN) attached through an alkoxy linker. The copolymer approach is adopted to minimize the phase separation between the functional components usually seen in homopolymer photorefractive composites. A copolymer with a polyacrylic backbone was used to attach pendant groups, tetraphenyldiaminobiphenyl-type (TPD) and CAAN in the ratio 10:1 by the synthetic modification of the polyacrylate TPD (PATPD) polymer. The host PATPD-CAAN copolymer provides the optical absorption and charge generation/transport at the writing wavelength (532 nm). A plasticizer, 9-ethyl carbazole (ECZ)
剩余内容已隐藏,支付完成后下载完整资料
可更新的全息三维显示器
Savascedil; Tay , P.-A. Blanche , R. Voorakaranam , A. V. Tunc , W. Lin , S. Rokutanda , T. Gu , D. Flores , P. Wang , G. Li , P. St Hilaire , J. Thomas , R. A. Norwood , M. Yamamoto amp; N. Peyghambarian
全息三维(3D)显示器不需要特殊的眼镜,便可提供逼真的图像,应用于场景模拟体现其价值,例如医疗,工业和军事成像。目前市售的全息3D显示器缺乏图像更新能力且成本高,从而限制使用。光折变聚合物是动态的全息记录材料,使图像得到更新,并具有广泛的应用,包括光学,通过成像散射介质和光通信。用于三维显示是合适的,光折变聚合物需要具有接近100%的衍射效率,快速写入时,图像持久性,快速擦除和大面积未被显示的属性的组合。在这里,我们每隔几分钟便能报告一个能够记录和显示的已更新的全息三维图像。这是迄今为止最大的光折变三维显示;它可以被记录在几分钟之内,观看几个小时,却不需要刷新并且可以在需要时被完全擦除,并与新的图像更新。
大量的研究一直致力于三维成像的发展,因为二维(二维)图像只提供有限的信息,因为他们缺乏视差和深度的对象或场景。三维成像技术,依靠特殊的眼镜有有害的副作用如眼疲劳和眩晕症。全息三维显示不产生这些问题是因为他们可以用肉眼(立体)和模拟自然视觉。人类天生就被全息图所吸引,广泛应用于广告和影视娱乐。当前的静态全息显示器能够显示百万兆字节数据,并在几乎任何尺寸的全彩色、全视差和深度。此前,动态三维全息显示基于声光、液晶显示器和基于微机电系统已被证明的记录媒体。不幸的是,这些设备没有内存,从而不表现出持久的记录图像。缺乏持久性的结果在更新速度的要求,以避免图像闪烁的速度比30赫兹。三维图像表现出非常高的信息内容,所以这种高刷新率的要求目前限制了实时全息显示的小尺寸。光折变晶体是动态的全息存储材料,具有记忆,但缩放他们的三维显示器所需的大尺寸是具有挑战性的。利用光的热塑性塑料表面起伏光栅提供可逆记录,但是他们遭受有限的衍射效率,通常需要开发过程后的记录。为了扩展动态全息三维显示对实际应用,替代材料具有高效率,可逆的记录能力,内存和显着更大的尺寸是必要的。
光折变聚合物是动态的全息记录材料,能够满足这些要求。光折变聚合物、三维折射率图案的相位全息图-复制两事件相干光场的非均匀形成干涉图样。这是基于由于选择性运输和光俘获产生的电荷的内部空间电荷场的累积,和电场诱导的折射率变化通过光折变效应(参考文献5、参考文献和参考文献4)。这个过程与参与光聚合物全息图的光化学过程是完全可逆的,因为电荷可被均匀照明。光折变光栅的性能允许刷新/更新的全息图。在一个典型的光折变材料的全息图被视为与一个读光束的帮助下,只要初始写入(记录)束是本。当写入光束被关闭,光折变全息图衰减的材料特性和环境热过程的速率。具有快速记录的光折变聚合物通常具有很高的衰减率。为可更新的3D显示器,但材料快速记录和慢衰减(持久)是必需的。一个数字的优点(FOM)为记录介质的设计空间复用3D显示器可以储存时间的总记录时间比在这写梁打开,每个全息元(hogel)。在大多数的光折变材料的FOM是接近1,这比从较小的远。1000需要使用更新的3D显示器具有足够大的尺寸和分辨率。
我们已经开发了光折变聚合物复合材料,结合这些特性,适合使用在可更新的3D显示器。复合组成的共聚物具有空穴传输基团和甲醛苯胺组(CAAN)连接通过烷氧基交联剂。该共聚物的方法是通过减少通常在均聚物的光折变材料看到功能组件之间的相分离。一个用丙烯酸共聚物是用来连接骨干侧基,tetraphenyldiaminobiphenyl型(TPD)的合成改性聚丙烯酸酯TPD的比例为10:1(聚合物PATPD CAAN)。主持人patpd-caan共聚物在写作波长提供光学吸收和电荷产生/运输(532 nm)。增塑剂,9-ethyl咔唑(ECZ)添加到复合。非线性光学(NLO)性质的加入氟化dicyanostyrene实现(fdcst)生色团。复合patpd-caan:fdcst:硝酸益康唑(50:30:20 wt%)是由熔融两铟锡氧化物镀膜玻璃电极之间用厚度为100毫米的玻璃间隔珠形成薄膜器件。这种复合材料在60天的加速老化试验中无相分离,为7天。光折变器件显示近90%的衍射效率在4 kV,四波混频测量稳态电压(图1A)。两波耦合增益系数C为这些设备在5 kV约200厘米(插页图1A)。图1b显示了一个4times;英寸有源区制成复合薄膜器件。该设备显示没有降解或介电击穿的使用时间延长(数个月)在显示记录实验,与数百个写/擦除周期,每个月在高外加电压(9千伏)和光强度约100毫瓦厘米。
记录在光折变聚合物薄膜装置的全息图可以持续在黑暗中达3小时(无需编写光束)在4千伏的施加电压,同时连续被用红色(633纳米)的激光束探测。我们已经开发了一种新的技术,以改善的是基于所施加的电压,我们称之为“电压开球技术”的操纵有机光折变材料的写入速度。在光折变聚合物的常规全息记录,一个恒定的外部电压加在聚合物来动态极NLO发色团(参考文献5和其中的参考文献和参考文献4)施加。在开球的方式,我们采用增加电压(9千伏)横跨聚合物增加全息记录在写入速度,然后降低电压到4千伏其最佳值记录完成后。临时增加的电压便于电子 - 空穴对的有效分离,并且改善了漂移特性,迫使费行进速度,并增加了NLO发色团的取向顺序参数和速度。电压到记录后其最佳值的减小确保了全息持久性。电压开球的总体益处是每个hogel写时间到小于第二,通过施加电压的微调的减少。我们已经实现了用一个总写时间在1瓦厘米辐照只有0.5秒的使用这种技术(在此期间,写入光束都导通的时间)的55%的衍射效率(图2),比1.5%高得多效率与4千伏,而无需使用电压开球写作0.5秒完成。在此复合材料中的几个小时的全息图的持续时间,这相当于一个FOM。万而不需要thermal27或其它固定的方法,这是在对全息存储和显示应用光折变聚合物的发展显著步骤。
全息立体画-一个基于视点(角度)的有限数目的到记录的不同部分的光学多路复用技术中是用于制造3D图像和显示一个广泛使用的技术。我们已建立了基于使用如上所述的光折射聚合物装置全息立体一个完全自动化的,计算机控制的三维全息打印机/显示。 3D显示被记录在整个光折射聚合物装置具有4 3 4英寸(见图3)的有源区。第一,是从三维计算机模型产生的感兴趣对象的2D透视图。二维的观点,也可使用诸如磁共振成像,计算机辅助断层扫描,共聚焦显微镜或空中和卫星成像方法生成的。然后,观点划分或“切”成多个二维图像平面。图像平面正在使用计算机算法为二维矩阵(所述hogel数据),然后将其上传到一个空间光调制器(SLM)重新组织。是与一个532纳米的激光束照射在SLM显示与翻译阶段和一个电光激光快门按顺序hogel的数据。由SLM(物体光束)调制的激光束照射聚合物装置上的预定hogel区域。相干参考光束同时照射在同一地区,它通过与物体光束和光折变效应干扰便于hogel的记录。 1 hogel被记录后快门关闭激光束,将聚合物装置被转换到下一hogel位置,以及新hogel数据上传到SLM(见补充视频1用于显示操作)。全息显示器使用从膨胀,低功率氦氖(633纳米)的激光在透射几何(图3)的光束的光被观看。
在许多应用中,水平视差仅(HOPE)成像29是一个有效近似全视差成像,因为人类使用水平偏移眼感觉到深度使用HPO记录有助于显著减少在3D显示酒店数量,导致更短的总写入时间。我们已经记录的3D显示器(4 3 4在尺寸英寸)用HPO成像在几分钟内复杂和高质量的图像(图4)(见补充视频2)。每hogel使用的总记录时间(0.83101毫米在尺寸)为0.5〜2秒变化,且所使用的总辐照度(两个光束的总和)为0.1W厘米。
在这里,我们使用的电压开球技术,其中一恒定高压(9千伏)溶液的hogels的记录过程中施加到整个聚合物装置的一个修改的版本。一旦所有的hogels的记录完成,这需要大约2.5分钟,电压降低到4千伏,从而确保长的持久性与最大衍射效率的最佳值。前几个记录hogels遭受后期hogels记录期间由于施加高电压的小的降低的衍射效率,但这种低衍射效率不创建跨越显示明显的亮度变化(见补充视频1和2)。对于更大的显示器的变化可以是显著,但是这可通过使用图案化的电极,其允许每个hogel所施加的电压的单独控制来避免。
3D显示表现出的45°的均匀的亮度和分辨率比得上NTSC(国家电视系统委员会)电视总水平视角。通常在非简并四波混频,其导致整个水平视图区域的强度变化观察到布拉格不匹配是通过使用垂直参考/读取光束的几何形状最小化。的图像是可见的长达3小时,直接光折射薄膜元件上,而不需要在记录的图像和观看者之间的中间突起工具或倍率(图4b)。
在图的全息图的图像。 4,它是用一台摄像机拍摄的,是只有在直接观看所经历的影响适度传真机。这主要是由于由HPO记录技术和电子假象如饱和,向其中人的视觉系统相对不敏感引入的散光。的图像可以被完全地通过使用532纳米的光束(图4c)显示的均匀照明分钟内被擦除,并且当需要时可以记录新的图像。没有技术限制可实现的显示大小,因为大的薄膜器件可以制造甚至平铺在一起。此外,材料的持久性和效率,使之成为未来的全视差显示器,通常需要比HPO显示幅度更多的信息内容两个数量领先的候选人。对于较大的,全视差显示器短脉冲记录30和热定影的组合都可以使用,这是全息3D显示发展的未来路线。
图像更新能力可以显著延长全息3D显示器的应用和减少三维成像的成本。我们已经开发出结合呈性能如大尺寸,高效率,快速记录,图像持久性,长寿命和光学和电损伤性,满足许多用于在全息3D显示器使用的主要要求光折变聚合物的设备。这些进展使我们能够展示迄今为止国内规模最大的可更新的光折变全息3D显示,可扩展到全视差和颜色。
Received 24 August; accepted 18 December 2007.
1. Benton, S. A. Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, Bellingham, Washington, 2001).
2. Lessard, L. A. amp; Bjelkhagen, H. I. (eds) Practical Holography XXI: Materials and Applications (Special Issue ) Proc. SPIE 6488 (2007).
3. Zebra Imaging, Inc. AElig;http://www.zebraimaging.comaelig; (2005).
4. Ostroverkhova, O. amp; Moerner, W. E. Organic photorefractives: mechanism, materials and applications. Chem. Rev. 104, 3267–3314 (2004).
5. Kippelen, B., Meerholz, K. amp; Peyghambarian, N. in Nonlinear Optics of Organic Molecules and Polymers(eds Nalwa, H. S amp; Miyata, S.) Ch. 8 507–623 (CRC, Boca Raton, Florida, 1996).
6. Ducharme, S., Scott, J. C., Twieg, R. J. amp; Moerner, W. E. Observation of the photorefractive effect in a polymer. Phys. Rev. Lett. 66, 1846–1849 (1991).
7. Meerholz, K. amp; Volodin, B. L. Sandalphon, Kippelen, B. amp; Peyghambarian, N. Photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature 357, 479–500 (1994). 8. Marder, S. R., Kippelen, B., Jen, A. K.-Y. amp; Peyghambarian, N. Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388, 845–851 (1997).
9. Mecher, E. et al. Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination. Nature 418, 959–964 (2002).
10. Volodin, B. L., Kippelen, B., Meerholz, K., Peyghambarian, N. amp; Javidi, B. A Polymeric optical pattern-recognition system for security verification. Nature 383, 58–60 (1996).
11. Kippelen, B. et al. Near infrared photor
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[30765],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。