高性能定向刨花板复合材料的制备与性能外文翻译资料

 2022-11-12 20:04:01

Manufacture and properties of high-performance oriented strand board composite using thin strands

Min Zhang bull; Ee-ding Wong- Shuichi Kawai

Jin-heon Kwon

Received: August 8, 1997 / Accepted: January 19, 1998

Abstract;Three-layered composite oriented strand boards were manufactured using very thin hinoki (Japanese cypress, Chamaecyparis obtusa Endl.) strands oriented in the faces and mixtures of sugi (Japanese cedar, Cryptomeria japonica D. Don.) and hinoki particles in the core. The boards were composed of two density levels, with 1:8:1, 0.5: 9: 0.5, and 0 : 10 : 0 face : core : face ratios. Polymeric and emulsion type isocyanate resins were used. The resin contents for the strands in the face and particles in the core were 10% and 5%, respectively. The steam-injection press was applied at 0.62MPa (160°C), and the steam-injection time was 2rain. The mechanical and physical properties of the boards were evaluated based on the Japanese Industrial Standard. The parallel moduli of rupture and elasticity along the strand orientation direction and the wood screw retaining force increased with increasing face/core ratios. Incorporation of 10%-20% of thin strands in the face of the boards improved the parallel moduli of rupture and elasticity by 47%-124% and 30%-65%, respectively. In addition, the thickness swelling after water-soaking at 20°C for 24h, and the parallel linear expansion after boiling for 2h and water-soaking at 20°C for lh, of the three-layered composite boards were below 8% and 0.15%, respectively,despite a short steam-injection press time. The thickness swelling of the boards decreased with increasing face/core ratios. In contrast, the presence of face strands seems to have a minimal effect on the moduli of rupture and elasticity along the perpendicular direction of the three-layered composite boards. A similar trend was observed for the internal bond.

Introduction

In recent years, following the reduction in timber resources and degradation of the global environment, effective utilization of thinnings and fast-growing forest resources have gained increasing importance. 12 Currently, the annual thinnings from the plantations of hinoki and sugi are available in large quantities in Japan. Therefore, much research has focused on the utilization of these materials. It is possible to process hinoki and sugi thinnings into an engineered wood product such as glulam, but there are many problems of production efficiency and low recovery. It may be more feasible to convert hinoki or sugi thinnings into laminated veneer lumber. 34 Thinnings of hinoki or sugi also have a great potential to be used as the raw material for the particleboard or fiber-based board industry. Development of a growing and utilization system of hinoki and sugi would represent a significant contribution to the conservation of natural forest resources and preservation of the environment. Previous studies reported the effect of particle configuration on particleboard properties. 5-a It is clear that the bending strength of particleboard is highly dependent on the length/thickness ratio of the particle; that is, the moduli of rupture (MOR) and elasticity (MOE) increase with increasing particle length (L) or decreasing particle width (W) and thickness (T). The mechanical properties of the particleboard can thus be marked improved by using longer and thinner particles or strands. Early studies on the manufacture and properties of strand board or oriented strand board (OSB) 9-12 reported great improvement in the MOR and MOE of the board due to the orientation of strands but with little improvement in the dimensional stabilities. The high dimensional stability of OSB may be achieved through
application of new processing technologies, such as threelayered structural design, isocyanate resins, and steaminjection pressing method. This paper reports the use of oriented hinoki strands with 0.1 mm thickness, almost equivalent to its fiber bundle diameter for producing fiberboards, in the face of threelayered OSB composite, with mixtures of hinoki and sugi particles in the core. The application of steam-injection press and the effects of the face/core ratio on board properties are discussed.

Materials and methods

Materials

The raw materials used in this experiment were thin strands from hinoki (Chamaecyparis obtusa Endl.) thinnings produced by a slicer and mixtures of sugi (Cryptomeria japonica D. Don.) and hinoki particles from sawmill wastes produced by a ring flaker. The mixing ratio of sugi and hinoki particles was about 1:1. The hinoki strands were very thin, with a mean dimension of 100 (L) times; 20 (W) times; 0.1 (T) ram. The average thickness of sugi and hinoki particles was 0.5mm. The moisture content of strands and particles was 10%. The adhesives used were polymeric and emulsion-type isocyanate resins (P-MDI, E-MDI) formulated by Gunei Chemistry Industry and Nippon Polyurethane Industry, respectively.

Manufacture of three-layer OSB composite

The composite produced consisted of three layers, where the faces and core were composed of oriented hinoki strands and a mixture of sugi and hinoki particles, respectively. The board was 385 times; 365 times; 12mm, with target densities of 0.60 and 0.70g/cm 3. The weight ratios of face strands/core particles/face strands were 0:10: 0, 0.5 : 9 : 0.5, and 1:8:1, expressed hereafter as face/core ratios of 0:10, 1:9, and 2:8, respectively. In view of the great specific surface area of the very thin hinoki strands, the thickness of which is similar to that of the fiber bundle, the 10% resin content of P-MDI and E-MDI were applied in the faces and 5% in the core, based on the oven-dry weight of strands and particles. Acetone (20%) was added based on the resin content for better resin consistency and distribution. The face

剩余内容已隐藏,支付完成后下载完整资料


高性能定向刨花板复合材料的制备与性能

Min Zhang bull; Ee-ding Wong- Shuichi Kawai

Jin-heon Kwon

摘要:以日本柏树、日本黑荆芥、日本杉、日本柳杉、日本小叶杉为原料,采用极薄的细丝为取向材料,以细丝为芯材,以细丝为芯材,制备了三层复合定向刨花板。板材由1:8:1、0.5:9:0.5和0:10:0面芯面比组成。采用聚合型和乳液型异氰酸酯树脂。面股和芯粒的树脂含量分别为10%和5%。注汽压力为0.62MPa(160℃),注汽时间为2rain。采用日本工业标准对板料的力学性能和物理性能进行了评价。沿钢绞线取向方向的断裂弹性平行模量和木螺钉固位力随面芯比的增大而增大。将10%-20%的细股掺入板表面后,平行断裂模量和弹性模量分别提高了47%-124%和30%-65%。此外,尽管注汽压力时间较短,但三层复合板在20℃浸水24h后厚度膨胀,沸腾2h后平行线性膨胀,lh在20℃浸水后平行线性膨胀,厚度分别低于8%和0.15%。板厚膨胀率随面芯比的增大而减小。相反,面股的存在似乎对沿三层复合板垂直方向的断裂模量和弹性模量影响很小。在垂直方向上,内部粘结强度、硬度和线性膨胀也有类似的趋势。

关键词:细股颗粒定向刨花板;三层复合材料;蒸汽喷射压力机

导言:近年来,随着木材资源的减少和全球环境的恶化,有效利用森林变薄和速生森林资源变得越来越重要。1rsquo;2目前,日本每年从小野和杉木的种植园中获得大量的间伐。因此,许多研究都集中在这些材料的利用上。日野木和杉木的薄层可以加工成胶合木等工程木制品,但存在生产效率低、回收率低等问题。将日木或杉木的薄层转化为单板层合材可能更为可行。3rsquo;4日木或杉木的减薄也有很大的潜力,作为刨花板或纤维基板工业的原料。发展hinoki和sugi的生长和利用系统将对自然森林资源的保护和环境的保护作出重大贡献。以往的研究报道了颗粒结构对刨花板性能的影响。5-a可见刨花板的抗弯强度高度依赖于刨花板的长度/厚度比;即断裂模量(MOR)和弹性模量(MOE)随颗粒长度(L)的增加而增大,或随颗粒宽度(W)和厚度(T)的减小而减小。因此,使用较长较细的颗粒或细股可以显著改善刨花板的力学性能。早期对刨花板或定向刨花板(OSB) 9-12的制造和性能的研究报道,由于刨花板的定向,刨花板的MOR和MOE有了很大的改善,但尺寸稳定性几乎没有改善。OSB的高维稳定性可以通过以下途径来实现

新工艺技术的应用,如三层结构设计、异氰酸酯树脂、蒸汽喷射压制法等。本文报道了在三层OSB复合材料表面,采用厚度为0.1 mm,几乎与其纤维束直径相当的定向hinoki股,以hinoki和sugi颗粒的混合物为核心,生产纤维板。讨论了蒸汽喷射压力机的应用以及端面/芯材比对板形性能的影响。

材料和方法

材料

本实验所用的原料是由切片机生产的日本木槿(Chamaecyparis obtusa Endl.)的细股,以及由环形剥皮机生产的锯木厂废料的sugi (Cryptomeria japonica D. Don.)和日本木槿颗粒的混合物。sugi与hinoki颗粒的混合比例约为1:1。hinoki丝非常细,平均尺寸为100 (L)times;20 (W)times;0.1 (T) ram。sugi和hinoki颗粒的平均厚度为0.5mm。丝状和颗粒的含水量为10%。所用胶粘剂分别为谷尼化学工业和日本聚氨酯工业配制的聚合物型和乳液型异氰酸酯树脂(P-MDI、E-MDI)。

三层定向刨花板复合材料的制造

合成物由三层组成,其中面和核分别由定向的hinoki链和sugi和hinoki颗粒的混合物组成。板厚385times;365times;12mm,目标密度为0.60和0.70g/cm 3。面股/芯粒/面股的重量比为0:10:0、0.5:9:0.5和1:8:1,以下分别表示面股/芯股的重量比为0:10、1:9和2:8。的大比表面积非常薄的扁柏链,相似的厚度的纤维束,10%的树脂含量P-MDI和E-MDI面孔和5%的核心,基于链的烘干的重量和粒子。在树脂含量的基础上加入丙酮(20%),使树脂的稠度和分布更加均匀。面对链是hand-formed使用形成框和一个框架组成的槽大约25毫米宽除以薄铝盘子,这是位于30-50mm上面的顶部垫。总的来说,纵轴之间的偏差角板和导向链是20°。采用160℃(0.62 MPa)蒸汽喷射压力机生产OSB复合材料,蒸汽喷射时间为2 min,呼吸时间为15 s。

根据日本工业标准(JIS) a5908和z2117对三层定向刨花板复合材料的性能进行了评价。评估的性能包括断裂模量(MOR)和弹性模量(MOE)的平行模量和垂直模量,沸腾后的弯曲强度(wet-MOR和wet-MOE),内键强度(IB),木螺钉保持力和布氏硬度。弯曲试件220times;40times;12mm,有效跨板厚度比为17:1。弯曲试验加载速度为lmm/min。湿法弯曲试验先将试样煮沸2h,然后在20℃下浸泡i h,再进行试验。此外,还用百分表测量了上述调节后的平行和垂直线性膨胀度(LE)。IB、木螺钉固位力、布氏硬度试样分别为50times;50mm、50times;40mm、40times;40ram。布氏硬度试验加载速度为0.5mm/min。干-湿调节循环下测厚膨胀(TS)、吸水(WA):先风干后20℃浸泡24h, 105℃烘干24h, 70℃浸泡24h, 105℃烘干24h;煮沸4h, 105℃烘干24h。TS、WA试件为50times;50mm。每项性能评价均采用5个试件。根据MOR、MOE、wet-MOR、wet-MOE、IB、木螺钉固位力、布氏硬度等性能与密度的回归关系,将MOR、MOE、wet-MOR、wet-MOE、IB、木螺钉固位力、布氏硬度值调整为等目标密度。采用五个试样的平均值进行TS和WA测定。

结果与讨论

图1为与E-MDI粘结的三层OSB复合材料的面芯比与MOR、MOE的关系。沿板条取向方向的MOR和MOE随板面/芯材比的增大而增大。具体的MOR和MOE(即,三层OSB复合材料的最大面芯比为2:8时,MOR和MOE与板密度之比)分别达到100MPa和8.6GPa。这些价值可与商业胶合板相比较。3 .这种改善是由于板面中hinoki股的定向效应,以及板面/芯比增加导致的板整体树脂含量的增加,因为面股的树脂含量高于芯粒的树脂含量。E-MDI粘结板厚度为0.70g/cm 3密度,不同面芯比下密度分布如图2所示。一般情况下,各类板的密度剖面均为u形(即,高面密度,低芯密度)。结果表明,随着表面/岩心比的增大,峰值密度向板表面偏移。hinoki钢绞线较高的抗弯强度和杨氏模量增加了平行MOR和MOE,它们构成了夹芯结构的张拉压缩区,占弯曲荷载的大部分。此外,垂直于三层复合板钢绞线取向方向的MOR和MOE随面芯比变化不大。当面芯比为1:9或2:8时,板的垂直运动与均质刨花板相似(即,以面芯比0∶10计算)。在以往的研究中也有报道称,板的垂直MOR和MOE随着面芯比的增大并没有受到太大的影响。13;6与PMDI粘结的三层OSB复合材料的MOR和MOE的趋势和值相似。图3显示了板的面/芯比与平行MOR和MOE的增长率之间的关系。MOR和MOE的增长率可以用增加面/芯比的直线来表示。在面部加入10%-20%(重量基)的定向细野木丝,可使平行MOR和MOE分别提高47%-124%和30%-65%。从图3可以看出,在较低的板密度下,MOR和MOE的增长率随着面芯比的增大而增大。与E-MDI粘结的板的湿mor和湿moe如图4所示。煮沸2h, 20℃水浸泡lh后测定抗弯强度。在干燥条件下,平行湿mor和湿moe随面芯比的增大而增大。在这些蒸汽喷射压制的E-MDI和P-MDI粘结板中,MOR和MOE的保留率在50%到70%之间。

图5为板的面心比与板的IB强度之间的关系。在0.60 g/cm 3密度或0.70 g/cm 3密度时,在板表面添加日月木丝不会影响三层OSB复合材料的IB强度。统计分析还表明,在95%显著性水平下,面核比对板IB强度无显著影响。早前的一项研究也报告了类似的结果。这是因为均质或非均质板的核心密度值相似,如密度剖面分析所示。0.60和0.70g/cm 3密度板的IB强度分别为0.85和1.20MPa。由于异氰酸酯胶黏剂的使用提高了产品的一致性和颗粒间的粘结性,这些数值均高于工业刨花板和OSB。图6为板的面/芯比与木螺钉支护力之间的关系。面心比为2:8的三层OSB复合材料性能最佳;与平行MOR和MOE相比,面内加入定向股对木螺钉固位力的影响不明显。异氰酸酯树脂的种类对板的IB和木螺钉固位力影响不大。

硬度

图7为板的面芯比与布氏硬度之间的关系。虽然与E-MDI结合的板比其他板硬,但统计分析表明,表面/芯比的变化对板的硬度影响不大。如前所述,三层复合板的硬度受板的密度和压实比的影响较大,而不受表面材料本身硬度的影响。18本实验中,面材和芯材的密度相似,其中sugi和hinoki的密度分别为0.40和0.45,19。0.60 g/cm 3板的压实率随工作面/岩心比的变化不大,从1.46到1.50,而0.70 g/cm 3板的压实率在1.71到1.75之间。

尺寸稳定性干/湿循环后,E-MDI粘结板在不同面/芯比下的厚度变化如图8所示。板的TS值随面芯比的增大呈下降趋势。三层OSB复合材料在20℃浸泡24h、煮沸4h后的TS值分别小于8%和20%。将10%- 20%的极细细hinoki丝加入到表面,可使均质刨花板的TS提高20%-30%。均一刨花板在浸水过程中尺寸的变化主要是由于纤维细胞壁吸水膨胀,结合强度降低导致颗粒崩解,热压作业时施加的压缩装置回弹。在传统的均质刨花板中,t的大部分来源于高密度面层的回弹。在三层OSB复合材料中,细hinoki丝在板面上定向如单板,具有良好的链间接触和高的键合强度,这是异氰酸酯树脂的贡献。因此,抑制了面部日木筋层的肿胀。此外,由于面链树脂含量较高,随着面芯比的增加,整体板树脂含量增加,这也有助于改善ts。在干湿循环处理结束时,三层OSB复合材料的回弹率较低,约为5%。结果表明,随着板密度的降低,TS值呈下降趋势。在P-MDI粘结板的TS中也观察到类似的趋势。图9为每次浸水处理后E-MDI粘结板的厚度膨胀/吸水(TS/WA)比。TS/WA比值表示板厚膨胀程度相对于相似湿态下的吸水程度。尺寸稳定性较好的板材,其TS/WA比较低。在本实验中,无论板的密度水平如何,板的TS/WA比值都随着板的面芯比的增大而显著减小。面心比为2:8的三层OSB复合材料的TS/ WA比均质零件板低30%-45%。三层结构0.6g/cm 3块板材经每次浸泡或煮沸处理后,TS/WA值均低于0.15。由此可见,三层OSB复合材料比均质刨花板或常规OSB具有更好的耐水性和尺寸稳定性。0.6 g/cm 3板的TS/WA比值为0.7g/cm 3板高于0.6 g/cm 3板,这是由于蒸汽喷射压力机生产的0.6 g/cm 3板和0.7g/cm 3板的TS值变化相对较小。相比之下,高密度板的WA值要比低密度板小得多。对P-MDI粘结板也观察到类似的趋势。

线性膨胀

图10为板在沸水浸泡2h后,lh水在20℃浸泡后板的LE情况。0.6 g/cm和0.7g/cm三层OSB复合板沿取向方向的LE值均小于0.15%。当面芯比为1:9时,平行LE约为均质刨花板的一半。将定向长丝和细丝hinoki引入板的表面,大大提高了板沿定向方向的尺寸稳定性。这种改善是由于木材纤维在纵向上的膨胀程度要比横向上小得多。此外,随着面芯比的增大,垂直于三层复合板钢绞线取向方向的LE略有增加。

结论

在刨花板表面低面芯比下加入定向日木束,可改善刨花板的平行力学性能。随着面芯比的增大,三层OSB复合材料沿取向方向的MOR和MOE显著增大。这些板材的MOR和MOE值均高于商业胶合板。此外,所有的板均表现出50%-70%的MOR和MOE的保留后煮沸。相比之下,三层复合板的MOR和MOE垂直于钢绞线取向方向、内部粘结强度和硬度随面芯比的变化不大。板的耐水性和尺寸稳定性随板芯比的增大而增大。表面/岩心比为2:8的三层OSB复合材料,尽管蒸汽喷射压力时间较短(2min),但厚度膨胀率最低(7% - 8%),TS/WA比均相降低30%-45%。所有三层OSB复合材料的束向平行LE均小于普通刨花板的一半。三层OSB复合材料是一种重量轻、强度高、尺寸稳定性好的新型生物基材料。感谢作者S. Nakata先生提供了本研究中使用的hinoki链。我们也感谢京都大学木材研究所的Umemura博士和T. Kawasaki女士、Hokushin Co.的Q. Wang博士和Tottori ken工业实验站的A. Tanioka先生在样板制作和评价方面所提供的帮助。

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[18588],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。