Reliability assessment of a typical steel truss bridge
Parvez Mustaque Shah, M.Eng , MBA, MIE Aust.
Senior Bridge Engineer, Assessment and Evaluation Section, Bridge Engineering, RTA
Professor Mark Stewart
Director, Centre for Infrastructure Performance amp; Reliability School of Engineering, The University of Newcastle
Henry Fok, B.Sc (Eng), M.E Eng.Sc, MIStructE
Bridge Assessment and Evaluation Engineer, Bridge Engineering ,RTA
SYNOPSIS
The paper presents the structural reliability analysis of a multilane steel truss bridge to assess the safety of the bridge, both in its current configuration and with the addition of a new lane. Probabilistic models of tensile and compressive resistance, as well as dead load, were obtained from existing literature. The probabilistic model of the peak 50-year live load was derived from traffic survey data obtained from the bridge site which enabled an Extreme Value Type I (EV-Type 1 or Gumbel) distribution to be fitted to the upper tail of the distribution of load effects due to traffic loading. The reliability analysis also included: (i) loading model uncertainty which allows for uncertainty in the selection of load and the structural analysis, and (ii) the effect of resistance updating based on proven service performance.
The reliability analysis found that the reliability index for the current bridge is 3.1. The reliability index for the new clip-on bus lane reduces to 2.9. If the weakest structural member is strengthened by 10%, 15% or 20% then the reliability indices increase to 3.18, 3.26 and 3.30 respectively. The reliability indices are compared to the target reliabilities recommended in the Australian Standards. This paper aims to determine the realistic bridge load capacity and the appropriate strengthening to carry maximum traffic load without minimising risk. The structural reliability analysis provides very useful risk management tool for assessing the safety of existing bridges.
1. INTRODUCTION
Reliability-based safety assessment is used frequently in Europe, and the Danish Roads Directorate (DRD). DRD is one of the few authorities to provide very specific guidelines on the reliability-based assessment of existing bridges (DRD, 2004). While deterministic safety assessments are appropriate for most bridge assessments, if an assessment recommend bridge closure, load restriction or extensive and costly strengthening it is often useful to undertake a more detailed reliability-based assessment. For example, the DRD now pursues reliability-based assessment as a matter of course for all structures that have failed a deterministic assessment and probability-based assessments on 11 bridges has saved the DRD over $35 million (Orsquo;Connor and Enevoldsen 2007). Note that Australian Standards now provide guidance on reliability-based assessment of existing structures (AS5104-2005, AS ISO 13822-2005).
2. BACKGROUND AND BRIDGE DESCRIPTION
The Roads and Traffic Authority of NSW (RTA) manages more than 5000 bridges in its network and 86 of them are steel truss bridges as shown in Figure 1A. These bridges were built over 125 years using various materials, technology and five different design standards. These steel truss bridges are exposed to different environments and subject to increased traffic loading and frequencies. There 86 steel truss bridges and there distribution by design age are shown in Figure 1B.
Figure 1: RTA bridges
The Bridge over Iron Cove is a major bridge on a major arterial route in Sydney. It was built in 1955 to accommodate 4 traffic lanes. It has 4 plate girder spans and 7 steel truss spans. In 1970s, one external traffic lane was added to the upstream side of the bridge, mostly for the use of buses. This external lane is supported on cantilevers from the original bridge.
The elevation and cross-section of the bridge are shown in Figure 2 and 3 below. The sequence of span is 2 x 18m continuous plate girders, 7 x 52m steel trusses simply supported and 2 x 18m continuous plate girders. The plate girder spans consist of two main built-up girders supporting the cross girders. The truss spans have 7 panels each and the truss members are built from welded members.
Figure 2: Bridge Elevation Figure 3:Cross section of Bridge
Generally, strengthening of bridges is carried out in accordance with the current 1996 AUSTROADS Bridge Design Code (rsquo;96 ABDC). However, because of the earlier studies conducted in assessing the bridge, it was evident that strengthening the bridge as per rsquo;96 ABDC would have been exceptionally expensive. In addition, it was thought that the bridge would not experience the live loads stipulated in the rsquo;96 ABDC for the next 50 years or during its expected life.
Therefore, the RTA Bridge Engineering proposed a realistic method of determining live loads for strengthening the bridge for legal loads based on the current legal loads experienced by the bridge, the probability of multiple presences of legal loads and the predicted future growth of legal loads over the route. Based on traffic survey at bridge site, the probability of occurrences for worst load combination has been estimated and subsequently recommended the future design legal load combination for this multiple lane bridge. This approach will result a significant saving in the strengthening of the bridge.
In order to determine the reliability of this approach for a steel truss bridge on a critical network it was decided to conduct a reliability assessment of
剩余内容已隐藏,支付完成后下载完整资料
典型钢桁架桥的可靠性评估
Parvez Mustaque Shah, M.Eng , MBA, MIE Aust.
Senior Bridge Engineer, Assessment and Evaluation Section, Bridge Engineering, RTA
Professor Mark Stewart
Director, Centre for Infrastructure Performance amp; Reliability School of Engineering, The University of Newcastle
Henry Fok, B.Sc (Eng), M.E Eng.Sc, MIStructE
Bridge Assessment and Evaluation Engineer, Bridge Engineering ,RTA
摘要
本文提出了一种多车道钢桁架桥的结构可靠性分析评估桥梁的安全性,无论是对当前的配置还是增加了一个新车道的情况。拉伸和压缩抗力,以及静载荷的概率模型都是从现有文献中获得。每50年活载的概率模型是来自使极值Ⅰ型(EV1型或Gumbel)分布适用于由于交通负荷而存在荷载效应分布的上尾的桥址的交通调查数据。可靠性分析还包括:(ⅰ)加载模型的不确定性即允许荷载和结构分析选择中的不确定性,还有(ⅱ)基于成熟的服务性能的抗力更新的影响。
可靠性分析发现,目前桥梁的可靠性指标是3.1。新夹式公交专用车道的可靠性指标降低到2.9。如果最弱的结构构件由10%、15%或20%加强,可靠性指标则分别提高到3.18、3.26和3.30。可靠性指标与澳大利亚标准提及的目标可靠度相比较。本文的目的是确定现实的桥梁承载能力和适当加强风险最小化时运载最大交通负荷。结构可靠性分析为评估现有桥梁的安全性提供了非常有用的风险管理工具。
1.简介
基于可靠性的安全性评估在欧洲以及丹麦公路局(DRD)被频繁使用。DRD是对现有桥梁基于可靠性的安全性评估提供非常具体的指导方针的少数权威机构之一(DRD,2004)。虽然确定性安全评估对大多数桥梁评估是适当的,但是如果一个评估建议大桥关闭,负载限制或广泛和昂贵的强化,进行更详细的可靠性评估将是非常有用的。例如,DRD现在追求将可靠性评估作为那些有着失败的确定性评估和已经节省了超过三亿五千万美元的11座桥梁的概率性评估的所有结构的必然要求(Orsquo;Connor and Enevoldsen 2007)。值得注意的是,澳大利亚标准现在提供对现有结构可靠性评估的指导(AS5104-2005, AS ISO 13822-2005)。
- 背景和桥梁描述
新南威尔士州道路交通管理局(RTA)管理着其网络中的5000多座桥梁和如图1A所示的它们中的86座钢桁架桥。这些采用各种材料,技术和五种不同的设计标准的桥梁被建成已经有超过125年的时间。这些钢桁架桥被暴露在不同的环境并且遭受着过大的交通负荷和频率。86座钢桁架桥和设计时代的分布如图1B所示。
图1 RTA桥梁
在铁湾桥是悉尼主要干线的一座重要大桥。它建于1955年,以容纳4个交通通道。它有4个板梁跨度和7个钢桁架跨度。在20世纪70年代,一个主要用于公共汽车使用的外部交通通道被添加到桥的上游侧。这个外部车道支承在原桥的悬臂上。
桥的高度和横截面如图2和3所示。跨度的序列是2times;18m连续板梁,7times;52m钢桁架简支梁和2times;18m连续板梁。板梁跨度
由2个支撑跨梁的主要组合梁组成。桁架跨度各有7个面板并且桁架构件都是由焊接构件建造的。
图2 桥标高 图3 桥横截面
一般来说,桥梁加固是按照目前1996 Austroads桥梁设计规范实施的 (rsquo;96 ABDC)。然而,对于进行桥梁评估的早期研究来说,加固桥梁按1996 Austroads桥梁设计规范很明显将是非常昂贵的。此外,有人认为桥不会经受1996 Austroads桥梁设计规范中规定的未来50年或其预期寿命期间的活荷载。
因此,RTA桥梁工程提出了基于桥梁经受的现行法定荷载下桥梁加固的法定荷载,法定荷载多存在的几率以及预测未来法定荷载增长趋势的确定活荷载的一种现实方法。根据桥址的交通调查,估计出最差负载组合出现的概率并且随后建议多车道桥梁未来的法定荷载组合设计。这种方法将导致桥梁加固方面一个显著的节省。
为了确定在钢桁架桥关键网络上对关键部件进行可靠性评估这种方法的可靠性,可靠性分析仅限于桁架构件(如图4),而不限于甲板或其他结构构件。在这项研究中,不考虑容量和连接可靠性,以及恶化和疲劳。
本文讨论了这种方法的使用并且认为这种方法的使用会对其他类似桥梁的最小加固有益。
图4 桁架
3. 抗力的概率模型
钢结构构件抗力的概率模型是由屈服强度的统计为主(标准偏差,分布类型)。屈服强度是一个高度可变参数,通常建议,评估结构的试验或样品能够更好地描述所考虑结构的屈服强度(如Diamantidis 2001)。测试数据编入贝叶斯统计框架的结果是高平均强度与低变差系数的选择(COV)。RTA完成了桥单元的有限测试和所提及的基于硬度测试的变化在230-250MPa之间的屈服强度的计算。因此,在随后的分析中,所有的桁架单元指定的的屈服强度被假定为230兆帕。
3.1 抗拉承载力
张力屈服可变性的来源(T)是模型误差、屈服强度和横截面面积(Pham 1987)。因此,mean(T)= 1.17Nt,COV(T)= 0.10,其中NT是由AS5100.6-2004指定的张力屈服承载力的设计值。受拉承载力是对数正态分布。
3.2受压承载力
受压承载力可变性的来源(C)是模型误差,屈服强度和横截面面积(Pham and Bridge 1985)。模型误差取决于构件的长细比。通过Pham and Bridge( 1985)提供的统计数据是基于工作压力规范规定(AS1250-1981),而不是目前的极限状态规范AS4100-1998和AS5100.6-2004。统计数据使Pham and Bridge( 1985)对于从 AS5100.6-2004中获得的极限状态承载力设计值 (Nc)得到修正,见表3。这些统计数据将被应用于下面的可靠性分析中。轴心受压承载力是对数正态分布。对于上弦杆有Le/rlt;46.3,然而所有其他受压构件有着限制范围内的长细比(46.3lt;Le/rlt;92.6)。而当拉伸和轴心受压强度统计衍生为热轧型材的可靠性校准来自基于可靠度的热轧部分校准时,Ellingwood等人(1980)表明了板梁的统计数据和热轧型部分没有显著不同。
4. 荷载建模
4.1 恒载
恒载是永久荷载,包括结构的重量。对于结构评估的目的,丹麦公路局的指导方针对现有结构的可靠性评估(DRD 2004)建议:
1。结构恒载:mean(G)=Gn COV(G)=0.05
2。附加恒载(沥青):mean(GW)=GnW COV(GW)=0.10
其中Gn 和GnW 分别是结构的设计(指定)恒载和附加载荷。恒载是正态分布。在目前的分析中,沥青自重对总恒载的贡献数据是不可用的。预计沥青自重与总恒载相比是很小的,所以总恒载的可变性假定与所提及的结构恒载的类似。
4.2 活载
交通活载模型由于大量的交通车道和重型车辆交通的组合是复杂的。对于极限荷载概率模型的结构,如峰值负荷的影响超过50-100年,评估安全性的决定(例如DRD 2004)是相当发达和有用的。如果一般的负载和流量数据是可用的,那么单个和多个车辆存在的频率,个体车辆负载的可变性,每车道车辆类别和交通量的增长以及使用的车辆质量引起的峰值负载效应的详细信息是可取的。
负载历史对于未来或预期的使用寿命,以及从桥通车的时间到当今(以评估已有性能在抗力更新上的使用影响)是必要的。这种信息需要车辆类型和位置的许多组合的多重结构分析。Reid(2004)提出的对现有桥梁基于可靠性的负荷评定程序可能是一个有用的框架。然而,统计信息所需的车辆类型的大组合的多车道的桥梁在实践中是难以实施的。动态称重(WIM)的数据也被推荐来描述车辆质量高于设计车辆以及这种超载程度的可能性。通用集成和站点特定流量和加载数据的结构可靠性评估的整合是一个领域的进一步研究。
作为动态称重数据不可用的桥梁,这种分析需要一些使活载概率模型发展的近似值和假设。RTA提供了会引起桥上最大载荷的半挂车,B-双打和巴士的最差五种荷载情况。对于每个负载的情况,RTA计算了构件力和各负载情况发生的概率。这将使一个极值I型(EV-Type 1 or Gumbel)分布符合因交通荷载而导致构件力分布的上尾。构件力分布的上尾对结构可靠度影响最大。桥梁工作的时间段是直到2058年,那么50年活载的峰值概率模型就是必要的。
可靠性分析中还考虑了基于已有性能优先服务的抗力更新的影响(例如,Stewart and Val 1999)。RTA似乎有自从桥梁开放到当今好多年的交通组合,频率以及荷载的小统计数据。自从1955年桥梁开放以来由于交通量和质量的增加,桥梁很大可能在过去五年到十年经受了它的峰值车辆活载的这个假设是合理的。因此,自1955年以来的峰值车辆活载是基于五年的时间。RTA的交通数据呈现出交通量超过目前的水平增加50%,但这种影响可能是考虑了经历了超过50年的已有性能使用的仅有一个五年时间段的桥梁。
对五个最重负载工况LC1 到 LC5的西部桁架(支持夹式公交专用道)的轴向进行计算。由RTA提供的负载效应的数据采用冲击系数(u)= 0和附加车道因子1.0。RTA也提供了从他们的交通调查中获得的10到1000年之间的负载情况出现的概率的数据。这些可能被保守作为荷载情况出现的概率是基于以20 km/h的车辆速度获得的一个跨度不同车道的任何位置的最高多存在重型车辆(Ariyaratne et al. 2004)。5到50年时间段的五负载情况发生的概率总结在表1中。
Load |
Probability of occurrence in 50 years |
Probability of occurrence in 5 years1 |
Case |
(bus 4 lane traffic) |
(bus 4 lane traffic) |
LC1 |
0.01573 |
0.001573 |
LC2 |
0.02952 |
0.002952 |
LC3 |
0.00015 |
0.000015 |
LC4 |
0.01457 |
0.001457 |
LC5 |
0.00015 |
0.000015 |
表1 五负载情况发生的概率
Gumbel分布通常用于活荷载模型(Pham 1985;AS5104-2005),所以假定交通活荷载也将遵循一个Gumbel分布。对于每一个构件,一种负载情况 (LC)会在构件内部产生最大的力。因此,假定在50年时间段内超过这种情况的概率就是这种负载情况发生的概率。例如,对于竖向构件 U2L2, LC5产生最大的构件力,所以在50年时间段内超过这种情况的概率为0.00015(见表1)。由于负载情况的发生是不相互排斥的(即,事件是独立的),它遵循在50年时间段内超过最小力(五个负载情况下)的概率是0.0499。这是基于众所周知的原则:
Pr(A) cup; Pr(B) = Pr(A) Pr(B) minus; Pr(A cap; B) |
(1) |
每个西方桁架构件的Gumbel统计参数可以在两个百分位数是已知的情况下得到。在这种情况下,上百分位采取负载情况下的最大
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[146245],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。